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METHODOLOGY

A recurring error in evaluating the effects 
of different pesticides, pollutants and fertilizers 
with a zero level
Gaétan Moreau*    

Abstract 

Background:  The Quenouille-Addelman solution has been proposed to properly analyze linear models with a 
crossed or factorial arrangement of treatments that includes a qualitative/categorical and a quantitative factor with 
a zero level, a situation particularly prevalent in ecotoxicological studies. However, a review of the recent literature 
reveals that this solution isn’t used, perhaps due to a lack of recognition that zero-level factors can produce incom-
plete factorial arrangements.

Results:  Using practical examples, I demonstrate that the conclusions of a study can be substantially altered if the 
Quenouille-Addelman solution is not used when warranted.

Conclusions:  Suspecting that the lack of a detailed method may have contributed to the underutilization of the 
solution, I describe how to apply the solution using current statistical software packages and discuss how the solution 
can be adapted to address some experimental situations not previously considered.
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Introduction
Analyzing a study with a crossed or factorial arrange-
ment of treatments that includes a zero level is an under-
estimated challenge because often, a zero amount of 
each level of a qualitative/categorical factor is essentially 
the same treatment. Consider a study in which p differ-
ent pesticides are applied at r different rates, with one of 
those rates being zero. Since it doesn’t matter which pes-
ticide is applied at zero rate, there are {p (r‒1) + 1} single 
treatment combinations rather than p × r. Thus, an anal-
ysis with a two-way linear model cannot be carried out 
because the sums of squares (SS) and degrees of freedom 
(df ) of the analysis require adjustment to account for 
the incomplete factorial arrangement of treatments. The 
situation described above is common in the literature 

examining applications (e.g., pesticides, adhesive dental 
cements), enrichment (e.g., fertilization, isotope enrich-
ment study), inoculations (e.g., growth hormones, vac-
cines), pollutants, length of storage, etc.

Quenouille (1953) and Addelman (1974) independently 
proposed a solution, hereinafter referred to as the Que-
nouille-Addelman (QA) solution for linear models to deal 
with the issue discussed above. In short, the QA solution 
involves amalgamating the SS of two models to obtain a 
single model, without increasing the Type I and Type II 
error (see below). However, despite the existence of this 
solution, it is practically never applied when necessary. 
To support this claim, a literature search of recent pub-
lications with a qualitative factor and a quantitative fac-
tor including a zero level is presented in Additional file 1: 
Review of the frequency of use of the Quenouille-Addel-
man solution in the literature. This search showed that 
none of the reviewed studies applied the QA solution. 
Instead, 11.4% of the studies used an erroneous factorial 
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linear model, 2.5% excluded control treatment data from 
analysis, 36.7% performed a one-way test on a variable 
combining the qualitative and quantitative factors, and 
49.4% used other inadequate approaches such as leav-
ing out the comparison between qualitative treatments 
(Additional file 1: Review of the frequency of use of the 
Quenouille-Addelman solution in the literature). All 
aforementioned approaches are either biased, or contrib-
ute to information loss, as explained below. The resulting 
corollary is that the QA solution has been largely forgot-
ten, perhaps due to a misunderstanding of the impact of 
zero levels in factorial arrangements. An update on the 
subject appears overdue. Herein, I (1) demonstrate how 
noncompliance with the QA solution alters the conclu-
sions of a study, (2) describe how to achieve the solution 
using current statistical packages, and (3) examine how 
the solution can be adapted to solve situations not con-
sidered by Quenouille (1953) and Addelman (1974).

The Quenouille‑Addelman solution and substitute (flawed) 
approaches
To date, the adverse effects of not using the QA solution 
when warranted have not been demonstrated. In a review 
paper, Gates (1991) discusses the solution using an exam-
ple where the adjustment imparted is subtle, which does 
not do justice to the effect this solution has in most 

publications where it was used (Quenouille 1953; Green 
et  al. 1976, 1977; Conrad et  al. 1993; Lu and Nielsen 
1993; Cushman et al. 1998; Olivier et al. 2000; Gong et al. 
2001; Moreau and Bauce 2001, 2003). Using simulated 
data (available in Additional file  2: Simulated data used 
to produce Fig. 1 and Table 1) inspired by the aforemen-
tioned studies and literature review, I determined that 
the trends followed by the different levels of the quali-
tative variable as the quantitative variable increases can 
predict the effects of the solution. In the uncommon 
situation where the relationships with the quantitative 
variable of all individual qualitative treatments extend 
linearly from level zero (e.g., Fig. 1a), the adjustment pro-
vided by the solution is at its lowest. The interpretation 
of the results is slightly modified although the result of a 
linear model fit can substantially change (Table 1). Only 
one of all the published studies using the QA solution 
(i.e., Gong et  al. 2001) reported such data. For all other 
situations, significant differences between the QA solu-
tion and an unadjusted model occur if the solution is not 
used (i.e., Quenouille 1953; Green et al. 1976, 1977; Con-
rad et al. 1993; Lu and Nielsen 1993; Cushman et al. 1998; 
Olivier et al. 2000; Moreau and Bauce 2001, 2003). If the 
relationships with and without the zero level are differ-
ent (e.g., Fig. 1b), the adjustment conferred by the solu-
tion is at its highest (Table 1). In the latter example, the 

Fig. 1  Theoretical examples of factorial arrangements of treatments involving one qualitative factor with three levels and one quantitative factor 
with four levels that includes a zero amount. In a the relation radiates linearly from the zero level while in b the relation does not radiate in the same 
way
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unadjusted model and the QA solution offer contrasting 
results, one indicating a strong interaction and the other 
not. Changing the scale (i.e., applying data transforma-
tion) does not help. Thus, in most cases, the QA solution 
increases the SS associated with the qualitative variable 
at the expense of the interaction term. Unadjusted mod-
els have an inflated Type II error rate when evaluating 
the main effect of the qualitative variable and an inflated 
Type I error rate when evaluating interactions. 

Other approaches have often been used instead of the 
QA solution (Additional file  1: Review of the frequency 
of use of the Quenouille-Addelman solution in the litera-
ture). For instance, some authors omitted control treat-
ment data from the analysis. While this can approximate 
the QA solution in some situations, it can also alter the 
results because the main effect of the quantitative vari-
able is not evaluated over its entire range. Other authors 
repeatedly used the control treatment in a series of analy-
ses with the other treatments, which results in inflated 
Type I error rate. In many cases, authors combined the 
qualitative and quantitative variables into a single vari-
able and performed a one-way test followed by multiple 
comparison (post hoc) tests, a procedure comparing each 
treatment to a single control (e.g., Dunnett or Williams 
test) or orthogonal contrasts. For example, a dose of 0, 25 
and 100 ml of a given pesticide could be classified as con-
trol, low dose and high dose, respectively. This, however, 
does not change the fact that a control dose of two dif-
ferent pesticides is the same treatment. In addition, this 
approach means that the interaction between the fac-
tors cannot be examined and trend analysis (see below) 
is impossible. The same would apply with an ANCOVA 
or a regression model. A Dunnett or Williams test is also 
considerably less informative than the QA solution. For 
example, using the data in Fig.  1a, a Dunnett test only 
reveals that the zero level is different from all but one of 
the treatment combinations (i.e., Level A at the value 1 
of the quantitative factor). The Dunnett or Williams test 
also precludes subsequent tests without the zero level 
because this inflates the Type I error rate. It is possible 
that contrasts could be used to derive main effect and 
interaction test statistics approximating the QA solution, 
but to our knowledge, no one has yet investigated this 
avenue.

The Quenouille‑Addelman solution for fixed‑effects 
two‑way linear models
Quenouille (1953) and Addelman (1974) presented a 
hand calculation solution for a two-way fixed-effects lin-
ear model. Although some steps of the solution can be 
performed using statistical packages (Gates 1991), the 
solution is generally hard to perform in one execution 

(Hocking 2013). Suspecting that the lack of a detailed 
example may have contributed to the underutiliza-
tion of the QA solution, I describe below a step-by-step 
approach to achieving the solution with most packages.

1.	 Using the whole dataset, calculate the unadjusted SS 
and df for all sources of variation using a two-way 
linear model.

2.	 Remove the zero level from the dataset and run the 
same analysis as in step 1.

3.	 Create a table of the SS and by combining the two 
linear models. Take the SS and df of the quantita-
tive variable, error and total obtained from the first 
model. The SS and df of the qualitative factor and 
interaction are obtained from the second model.

4.	 Increase the number of df associated with the error 
term to incorporate the degrees lost by the interac-
tion term because the difference between the qualita-
tive factor for the zero level can only be chance dif-
ferences (Quenouille 1953). The sum of the df of the 
treatments (A + Z + [A × Z]; Table  1) is now equal 
to the number of distinct treatments minus one. Of 
course, if there is any reason to suspect that there is 
a difference between the qualitative factors for the 
zero level, their SS can also be calculated separately 
according to the method presented by Quenouille 
(1953). The unadjusted two-way linear model and 
the QA solution both yield the same total SS if the 
design is balanced [i.e., no missing data; see Addel-
man (1974) and Gates (1991)].

5.	 Calculate the mean squares (MS = SS ÷ df ), F-values 
(F = MS ÷ MSError) and P-values (tabulated using 
functions included in spreadsheets or probability 
tables) of the adjusted model. For examples of this 
last step, the reader is invited to refer to a statisti-
cal textbook or to the QA solution presented on the 
right side of Table 1.

The Quenouille‑Addelman solution in other experimental 
situations
Below, I identify solutions, if possible, for analytical and 
experimental situations that cannot be solved using the 
calculations provided by Quenouille (1953) and Addel-
man (1974) and have not been previously addressed in 
the literature.

Polynomial contrasts
Because a linear model does not identify which of the 
pairs of means are different when there are more than 
two levels, additional tests are often required. Instead 
of post-hoc tests, when quantitative variables with fixed 
intervals are used, an effective approach is to perform a 
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trend analysis using polynomial contrasts (Keppel 1982). 
For example, data in Fig. 1b allow for a third-order pol-
ynomial contrast model presented at the bottom of 
Table  1. Note that the polynomial model contains one 
level less for the interaction term than for the main effect 
of the continuous variable due to the adjustment associ-
ated with the QA solution (Table 1).

Mixed models, maximum likelihood and REML
Models with both fixed and random effects are nowa-
days analyzed using mixed model procedures, Maximum 
Likelihood (ML) or Restricted Maximum Likelihood 
(REML) (Zuur et al. 2009). Most software programs per-
forming mixed model analyses now incorporate REML 
estimation as a default option (Gurka 2006). While sev-
eral statistical packages do not display a complete table of 
SS when performing these analyses, the MS and df can be 
obtained and allow for the inverse calculation of the error 
term. For example, a REML of the data from Gates (1991) 
developed with the lmer function in the lme4 package of 
R (R Core Team 2021) can be used to calculate the MS of 
the error term by dividing the MS of any fixed effect by 
its F-value. Once these terms are secured through cross-
multiplications, the QA solution presented above can be 
applied.

Unbalanced designs
An unbalanced dataset with missing data presents a chal-
lenge because the SS cannot be estimated independently 
and do not add up with the error term(s) to the total SS 
as they would in a balanced design. This non-orthogonal-
ity means that the Type I SS is affected by the order in 
which the terms are included in the model. One way to 
deal with this situation is to remove missing cells, ran-
domly remove samples from the dataset until equilib-
rium is reached and apply the QA solution. Because most 
researchers are unwilling to throw data away, another 
approach is to fit the missing cells using imputation tech-
niques (reviewed in van Ginkel et  al. 2007), and then 
apply the QA solution. A third method is to apply the QA 
solution using Type III SS but if two treatments exhibit 
different levels of imbalance (e.g., if the control has fewer 
missing data than the other treatments), this leads to 
biases in SS estimations and result in a different total SS 
for the unadjusted linear model and the QA solution. 
Ultimately, the choice between strategies to deal with 
missing data should depend upon the situation at hand 
(see review by Graham 2009).

Three‑way ANOVAs and higher‑order models
The methodology presented by Quenouille (1953) and 
Addelman (1974) does not apply to higher-order models 
such as three-, four- or five-way linear models. Although 

the potential for an inflated rate of Type I error increases 
as the order of a model increases (Cohen 2001), these 
models are frequently applied and need to be addressed.

In the case of a three-way linear model with one zero-
level quantitative variable and two qualitative variables, 
the solution is similar to the two-way fixed-effect linear 
model presented above. The SS of the error term and the 
quantitative variable are retrieved as usual while the SS 
of the two qualitative variables and all interactions are 
only calculated for non-zero quantities of the quantita-
tive factor. The degrees of freedom associated with the 
main effects are not modified but the degrees of freedom 
associated with all four interaction terms are reduced 
and transferred to the error term. An example of a 3-way 
ANOVA calculation is shown in Additional file  3: Data 
and solutions for a 3-way analysis. Fitting a four-way and 
higher-order models with a single quantitative variable 
follows the same procedure.

A higher-order linear model with at least one qualita-
tive variable could also include more than one quan-
titative variable with a zero level. An example of this 
situation would be a study of the effect of tillage (i.e., 
qualitative variable), nitrogen fertilization (i.e., quanti-
tative variable that includes a zero level), and pesticide 
application (i.e., a quantitative variable that includes a 
zero level) on the biomass of a given crop. However, the 
mathematical solution has not been developed to our 
knowledge for this situation and cannot be solved using 
the QA solution as discussed here.

GLMs, GAMs and Bayesian models
The QA solution has not been developed for generalized, 
additive and Bayesian models. Considering the useful-
ness of these approaches, I stress the need of developing 
an equivalent of the QA solution for these models in the 
near future. However, it is important to note that in the 
literature search presented in Additional file  1: Review 
of the frequency of use of the Quenouille-Addelman 
solution in the literature, no study used any of these 
approaches to handle the data and thus, that the solution 
for a linear model herein is still relevant.

Discussion/conclusion
In this article, the emphasis has been placed primarily 
on hypothesis testing for the QA solution but many con-
temporary analyses focus instead on estimating the vari-
ability associated with the mean or median. As the sum 
of the degrees of freedom differs when the QA solution 
is applied, the eventual calculations of confidence inter-
vals or error estimates will be impacted. For fixed-effects 
models, these calculations can be easily adjusted by fol-
lowing the methods described in standard statistical text-
books. On the other hand, more complex models (e.g., 
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REML) require a mathematical solution that is beyond 
the scope of this article.

Statistical errors are generally not intentional. In most 
cases where the QA solution was not used when needed, 
the study authors were probably unaware that they were 
making a mistake. It is likely that a lack of statistical liter-
acy also contributes to this situation. Likewise, poor sta-
tistical literacy among editors probably exacerbates this 
problem. As a peer reviewer, I have suggested to some 
authors to employ the QA solution. However, the sug-
gested changes have never been enforced by the editorial 
board, perhaps due to a lack of awareness that noncom-
pliance with the QA solution inflates type I and type II 
error rates. In their defense, the QA solution has prac-
tically fallen into oblivion since 2010 as a single review 
article (Moreau et  al. 2015) has cited Addelman (1974). 
Quenouille (1953) was cited 27 times in this same period 
but not for an application of the solution discussed 
herein. My aspiration with this article is to rectify this 
situation and reduce the incidence of this recurring error 
in future publications.
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