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Abstract 

Accurate and up-to-date crop-type maps are essential for efficient management and well-informed decision-
making, allowing accurate planning and execution of agricultural operations in the horticultural sector. The assess-
ment of crop-related traits, such as the spatiotemporal variability of phenology, can improve decision-making. The 
study aimed to extract phenological information from Sentinel-2 data to identify and distinguish between fruit trees 
and co-existing land use types on subtropical farms in Levubu, South Africa. However, the heterogeneity and com-
plexity of the study area—composed of smallholder mixed cropping systems with overlapping spectra—constituted 
an obstacle to the application of optical pixel-based classification using machine learning (ML) classifiers. Given 
the socio-economic importance of fruit tree crops, the research sought to map the phenological dynamics of these 
crops using deep neural network (DNN) and optical Sentinel-2 data. The models were optimized to determine 
the best hyperparameters to achieve the best classification results. The classification results showed the maximum 
overall accuracies of 86.96%, 88.64%, 86.76%, and 87.25% for the April, May, June, and July images, respectively. The 
results demonstrate the potential of temporal phenological optical-based data in mapping fruit tree crops under dif-
ferent management systems. The availability of remotely sensed data with high spatial and spectral resolutions makes 
it possible to use deep learning models to support decision-making in agriculture. This creates new possibilities 
for deep learning to revolutionize and facilitate innovation within smart horticulture.
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Introduction
The phenological stages of vegetation act as important 
indicators in monitoring vegetation growth and evalu-
ating how climate change may affect vegetation, among 

other functions (Pan et al. 2021). Phenology and related 
studies may be as old as civilization itself—farmers set-
tled in particular places and carried out certain agricul-
tural tasks, including sowing seeds, tending crops, and 
harvesting, at certain times of the year (Pan et al. 2021). 
Historical interest in phenology was sparked by a desire 
to understand how farming evolved and how it related to 
the climate (Chabalala et al. 2020). Phenological dynam-
ics are influenced by local environmental interactions, 
genetic factors, seasons, and agronomic management of 
the growing environment which results in phenology var-
iation (Xie and Niculescu 2022; Chabalala et  al. 2023a). 
Mapping crop types using phenological information 
acquired during crop key growth stages offers additional 
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possibilities for tracking crop growth changes (Pan et al. 
2021; Aitelkadi et al. 2021). The information about crop 
phenological events and their spatiotemporal variability 
can assist in improving the quality of crops and yields 
through the implementation of appropriate and sustain-
able crop management practices (Pan et al. 2021; Elders 
et al. 2022; Yedage et al. 2013). Therefore, accurate map-
ping of crops’ phenological dynamics is essential in crop 
production estimation, especially given the current cli-
mate uncertainty in sub-tropical Africa (Pan et al. 2021). 
Accurate crop yield prediction assists decision-makers 
and farmers in planning harvests, storage, and preparing 
for food import or export in the event of either shortage 
or surplus (Kordi and Yousefi 2022a).

Previous fruit-tree inventories were based on conven-
tional field surveys, which are costly, time-consuming, 
and impractical over vast areas, lack spatial variability, 
and are often subject to farmers’ reporting biases (Cha-
balala et al. 2020, 2023a; Xie and Niculescu 2022). Con-
versely, remote sensing can be applied to monitor crop 
phenology at a landscape level in a timely and effective 
manner (Chabalala et al. 2023b). The application of phe-
nological metrics for crop classification is mostly con-
ducted using stacked time-series data (Pan et  al. 2021; 
Xie and Niculescu 2022). (Singh et  al. 2022) used phe-
nology metrics derived from Landsat for sugarcane crop 
mapping in North India and obtained an overall map-
ping accuracy of 84.5%. A study by Feng et  al. (2023) 
used phenology metrics derived from Sentinel-2 to map 
rice, maize, and soybean for crop type mapping in Fujin, 
China and achieved an overall accuracy of 97.14%. How-
ever, existing approaches used for extracting temporal 
features lack the adaptability to handle sub-tropical farm-
ing systems with complex vegetation dynamics, charac-
terized by intra-class variability, interclass similarity, and 
persistent clouds resulting in disparate temporal patterns 
(Pan et al. 2021; Zhong et al. 2019). Furthermore, stacked 
images have high data dimensionality, and are highly 
computational (Pan et  al. 2021). Other studies applied 
vegetation indices (VIs) derived from time-series data, 
which has been proven to produce high classification 
accuracy in vegetation and crop mapping (Chen et  al. 
2019). Although the approach captures important traits 
related to vegetation health and growth. The vegetation 
indices (VI) are effective for crop types with distinct tem-
poral spectral characteristics and remain challenged by 
the spectral complexities emanating from diverse crop-
ping patterns in morphologically heterogeneous land-
scapes with similar spectra (Chabalala et  al. 2023b). 
However, the classification accuracy depends on the 
number of images used to create the time-series prod-
uct (Pan et al. 2021). Vegetation indices are created using 

specific spectral features, which ignores other bands that 
might be crucial in the overall classification model.

While crop phenology mapping approaches are well 
established, their applicability is subjected to uncertain-
ties in smallholder agriculture due to agronomic factors 
(Aitelkadi et  al. 2021). Furthermore, it is challenging to 
map fruit tree crops in sub-tropical smallholder regions 
due to the limited availability of cloud-free observations 
(Yin 2023). Although many studies have mapped horti-
culture crops and heterogeneous landscapes (Yin 2023). 
Sub-tropical smallholder agriculture in South Africa is 
planted in small plots (< 1  ha) and is characterized by 
multiple scales of mixed, irregular, and intercropping sys-
tems resulting in landscape heterogeneities—crops with 
different textures, shapes, sizes, colours, and morpholog-
ical features, and sharing spectral and canopy similarities 
(Biffi et al. 2021; Ukwuoma et al. 2022). Also, intra-class 
variation occurs because of fruit-tree mutations (Gao and 
Zhang 2021; Bal and Kayaalp 2021). Furthermore, the 
farming systems follow different growing calendars and 
management strategies, resulting in within-farm hetero-
geneity and fruit trees with similar growth profiles and 
morphological features (appearances, shapes, and colour) 
(Elders et al. 2022). This results in a multi-form classifi-
cation problem that is difficult to solve using single-date 
images as the available observations might not be sensi-
tive to specific crop growth stages (Gao and Zhang 2021; 
Kordi and Yousefi 2022b). The management strategies for 
horticultural crop cultivation differ from those for com-
mon crops (Elders et al. 2022). Therefore, the classifica-
tion models that are suitable for common crops tested 
in these regions cannot be transferred to other regions 
as they are sensor, region, and crop-specific (Villa et  al. 
2015).

According to existing literature, two classification 
approaches exist, i.e., Machine Learning (ML) and Deep 
Learning (DL). Machine learning (ML) algorithms such as 
random forest (RF), k-nearest neighbors (kNN), and sup-
port vector machines (SVM) have been applied in various 
plant studies (Prins and Niekerk 2020; Chabalala et  al. 
2022; Schreier et  al. 2021). Although remarkable results 
were achieved in classifying certain crop types, difficul-
ties in distinguishing between crop types were neverthe-
less reported. Machine learning (ML) approaches are 
generative and require predetermined classes, which 
render them unsuitable for identifying heterogene-
ous crop types with high crop variation, occlusion, and 
overlapping spectra (Kestur et al. 2018). Machine Learn-
ing classifiers such as SVM rely on features that are not 
designed for multi-temporal data, making them unable 
to model the inherent feature variation in time-series 
data (Pan et  al. 2021). Deep Learning (DL) has opened 
new horizons for innovation and the introduction of 
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novel approaches within the agricultural industry (Vas-
conez et al. 2020; Southworth and Muir 2021). As such, 
the extraction of information from nonlinear objects in 
complex farming systems is now possible through DL 
(Elders et al. 2022; Vasconez et al. 2020). Deep learning 
(DL) models are versatile tools that assimilate heteroge-
neous big data and solve the complex problem of fruit 
tree classification accuracy (Elders et  al. 2022). Thus 
far, different DL models, such as Convolutional Neural 
Networks (CNN), YOLOv5, and RetinaNet, have been 
used to distinguish and classify crop types (Biffi et  al. 
2021; Ukwuoma et al. 2022; Cai et al. 2018; Xiong et al. 
2022). Ismail and Malik (2021) compared five DL mod-
els (DenseNet, EfficientNet, NASNet, MobileNetV2, and 
ResNet) for grading apples and bananas and obtained 
a recognition rate of 98.6% and 99.2% for bananas and 
apples respectively using the EfficientNet model. The 
study by Xiong et al. (2022) evaluated five deep learning 
models (VGC16, AlexNet, InceptionV3, MobileNetV2, 
and ResNet) for classifying date fruit types and obtained 
a classification accuracy of 99% based on the Mobile-
VetV2 model. When mapping wheat, maize, squash, and 
sunflower in China, (Xiong et  al. 2022) found the Unet 
model to be superior to RF, SVM, Extreme Gradient 
Boosting (XGB,) and deplabv3 + . However, most of these 
studies concentrated on large-scale crops such as maize, 
rice, wheat, apple, citrus, and olives, grown in commer-
cial farms with no overlapping spectra (Elders et al. 2022; 
Li et al. 2022; Mashonganyika et al. 2021). Each crop has 
a microclimate that is dependent on plant development 
and such traits differ tremendously under climatic con-
ditions (Kumar et  al. 2021). Therefore, the performance 
of these mapping approaches tested on single crops 
might be limited if transferred to landscape locations 
with smallholder management practices (Ukwuoma et al. 
2022; Zhang et al. 2021).

The horticulture industry has a crucial role to play in 
advancing the economy, ensuring food and nutritional 
security in South Africa, and creating job opportunities 
for residents in Levubu (Vasconez et  al. 2020). Despite 
this, the horticulture industry in South Africa is still faced 
with challenges, including a lack of innovation, outdated 
agricultural practices, and insufficient technical skills. As 
a result, decision-making by farmers in Levubu relies on 
fruit tree inventories compiled manually, which is expen-
sive, time-consuming, and prone to human errors. There 
are no fruit tree datasets or maps of the spatial distribu-
tion of fruit trees, and only farm boundaries ascertained 
by means of Google Earth are available—and this is for 
only a small number of farming systems. Research on 
improving the mapping approach is crucial to obtaining 
robust results and thus developing appropriate manage-
ment strategies.

Although phenology metrics and time series data have 
been widely used to map fruit trees (Pan et al. 2021; Feng 
et al. 2023). Crop type mapping using time-series data in 
the context of smallholder agriculture is still challenging 
due to the lack of remote sensing data during the current 
analyzed season, mostly caused by clouds in sub-tropi-
cal regions (Pan et al. 2021). Thus, the development of a 
remote sensing-based fruit tree mapping model requires 
the selection of optimal images and adequate training 
data (Gallo et  al. 2023). The study by Chabalala et  al. 
2023b identified the optimal window period to map fruit 
tree crops during their critical phenological stages in 
Levubu, using Sentinel-2 monthly composites and Ran-
dom Forest. Their study revealed that fruit trees can be 
optimally mapped with an accuracy of 85% using images 
acquired from April to July. However, image composites 
have high data dimensionality, reported to limit the per-
formance of the ML models (Pan et al. 2021).

Therefore, the research aimed to overcome the inher-
ent problem of data dimensionality in time series data 
and the inability of the ML classifiers to handle hetero-
geneous information. This research applied phenologi-
cal metrics derived from Sentinel-2 images acquired 
during optimal crop-growing seasons (i.e., flowering, 
fruiting, harvesting) to map fruit trees in Levubu, South 
Africa, using a Deep Neural Network (DNN) model. 
These months correspond to clear conditions with no 
cloud interference in Levubu, which will enable the char-
acterization of the seasonal patterns of fruit trees based 
on their temporal phenological profiles according to 
their seasonal events (Singh et  al. 2019). This approach 
can provide reliable results for a challenging and highly 
heterogeneous agricultural region, like Levubu, which 
is characterized by fragmented small-sized fields with 
mixed cropping systems. The results of this research can 
help innovate and improve fruit management in small-
holder horticulture systems.

Materials and methods
Methodological framework
The research tested the applicability of Sentinel-2 time 
series images acquired during the optimal growing sea-
son using a Deep Neural Network (DNN) to distinguish 
fruit trees and surrounding land use types on sub-tropi-
cal horticultural farms in Levubu, South Africa. Figure 1 
shows the methodology followed in this study.

Research area
The research area, Levubu sub-tropical farms, is located 
in the Northern Limpopo Province (Fig. 2) which is very 
productive in horticultural farming in South Africa. The 
area has a total land coverage of approximately 10, 000 
hectares, and much of the land is over the Soutpansberg 
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Mountains located at 775  m above sea level (Chabalala 
et al. 2023a)]. The area is characterized by a warm climate 
and an average rainfall of 1000 mm accompanied by per-
sistent cloud cover along the mountains area, especially 
during the summer seasons (September to March) which 
coincide with the beginning of the flowering and fruiting 
seasons. Cloud cover is a bit better in winter months, (i.e., 
April to August). Hence the images acquired during this 
period will be used in this research. The Levubu farm-
ing area is composed of fragmented smallholder horti-
cultural farming systems. The average agricultural field 
sizes are smaller than 1 hectare (ha) planted with fruit 
tree crops (i.e., avocado, banana, guava, mango, macada-
mia nut) and surrounding land use types (i.e., bare soil, 
build-up, pine trees, water body, and woody vegetation) 
(Chabalala et  al. 2023a, 2022). The fruits are used for 
local, national, and global consumption and contribute to 
seasonal employment generation to the local surround-
ing communities and Gross domestic product in South 
Africa.

Data collection and processing
This section explains the datasets used in this study (in-
situ and earth observation) and how earth observation 
data was pre-processed before analyzing the data. Fur-
thermore, it shows the behavioural changes of crops in 
different growing seasons. Additionally, it discusses the 
classification algorithm applied in this study, and how it 
was implemented in Jupyter Notebook in a Python envi-
ronment. The concluding sub-subsection explains the 
assessment of the classification results.

In‑situ data collection
The in-situ data were collected during field campaigns 
conducted in December 2019, January 2020, and April 
2020. A handheld Garmin eTrex 20X global positioning 
system (GPS) with an accuracy of a sub-meter was used 
to record the geographic locations (latitude and longi-
tude). A total number of 304 (n = 304) ground control 
points were captured from the dominant land cover 

Fig. 1 Flowchart showing the Methodology followed to identify fruit trees and other land use types using Sentinel-2 images and the DNN 
algorithm
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classes; these include avocado (n = 49), banana (n = 53), 
built-up (n = 7), guava (n = 12), macadamia nut (n = 95), 
mango (n = 18), pine tree (n = 22), water bodies (n = 4) 
and woody vegetation (n = 10) (Fig.  3). These points 
(n = 304) were then used to guide digitizing additional 
points using the visual interpretation of Sentinel-2 
Images on ArcMap  (ArcGIS® v. 10.6; ESRI, Redlands, 
CA, USA) and Google Earth Pro (Chabalala et al. 2020, 
2023a). The ground data were subdivided into a 70% 
training set which was used to train and fine-tune the 
hyperparameters of the classification models, while the 
remaining 30% testing set was used to validate the clas-
sification results.

Spectral characteristics of fruit‑tree crops and co‑existing 
land use types
Efficient orchard management is dependent on crop 
phenology. The farming systems are intensive and 
intercropped making it challenging to map using sin-
gle-date images (Chabalala et  al. 2023b). Hence, for 
this research, phenological metrics were extracted 
from four optimal Sentinel-2 images acquired during 
key phenological stages of the fruit trees (i.e., flower-
ing, fruiting, and senescence) (Table  1). This informa-
tion was utilized to account for spectral confusion that 
mostly occurs while mapping crop types using single-
date images in heterogeneous landscapes. The spectral 
reflectance data for each image was extracted using the 

Fig. 2 Location of the research areas at the National (Top left corner) and District Municipality levels (Top right corner). Scene of the Sentinel-2 
RGB image indicates the research area. The green a and light grey areas, b represent Limpopo Province and the Vhembe District Municipality, 
while the dark grey c represents the Makhado and Collins Chabane Local Municipalities
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collected in-situ data using ArcGIS version 10.5. The 
average spectral characteristics curves of the fruit trees 
and other land use types considered in the research are 
presented in Fig. 4. The spectral curves were extracted 
from 10 Sentinel-2 multispectral bands using the col-
lected ground truth data.

Earth observation data and pre‑processing
Sentinel‑2 data
The Sentinel-2 (S2) images were downloaded from the 
Copernicus website (https:// scihu bcope rnicus. eu/) 
owned by the European Space Agency (ESA). S2 con-
sists of two satellites (Sentinel-2A and Sentinel-2B) with 
a temporal spatial resolution of 5–6 days (Darvishzadeh 
et al. 2019). The data have 13 spectral bands with spatial 
resolutions of 10, 20, and 60 that are in different wave-
lengths ranging from 443 to 2190 nm and consist of three 
additional red edge bands with a central wavelength of 
705  nm (Band 5), 710  nm (Band 6), and 783  nm (Band 
7), respectively (Table 2). The visible and red edge bands 
have been proven to have capabilities to detect vegeta-
tion foliar properties due to their sensitivity to leaf chlo-
rophyll and water content (Darvishzadeh et al. 2019). In 
this research, four Sentinel-2 time series images opti-
mally acquired from April to July, acquired in 2019/2020, 
corresponding to key fruit tree phenological stages (i.e., 
flowering, fruiting, and harvesting) were used (Table  1 

and Table 3). The utilization of optimal images acquired 
during critical crop growth stages has the capability to 
reveal the within-crop spectral similarities for accurate 

Table 1 Phenology calendar of the major fruit trees in Levubu subtropical farms

The colour shading represents the flowering Flo fruiting (Fru), and harvesting (Harv)) stages

Table 2 Spectral characteristics of  Sentinel-2 sensor

Band Description Spatial 
resolution

Wavelength 
centre

Wavelength 
width

B2 Blue 10 490 65

B3 Green 10 560 35

B4 Red 10 665 30

B5 Red-edge 1 20 705 15

B6 Red-edge 2 20 740 15

B7 Red-edge 3 20 783 20

B8 Near-infrared (NIR) 10 842 115

B8A Red-edge 4 20 865 20

B11 SWIR 1 20 1375 30

B12 SWIR 2 20 2190 180

Table 3 Sentinel-2 image acquisition dates

Images Acquisition dates Day of Year

April 2020-04-06 97

May 2020-05-26 147

June 2019-06-11 163

July 2020-07-05 187

https://scihubcopernicus.eu/
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spectral separability of a wide range of crop types (Zhang 
et al. 2018).

Image pre‑processing
The selected Sentinel-2 images used in the research 
were atmospherically and geometrically corrected using 
the SEN2COR processor in the ESA SNAP software to 
obtain the reflectance data in Level-2A Top-Of-Atmos-
phere (TOA) format (Darvishzadeh et  al. 2019). During 
pre-processing, the selected Sentinel-2 images were res-
ampled to 10 m spatial resolution and the remaining 10 
bands (i.e., band 2, band 3, band 4, band 5, band 6, band 
7, band 8, band 9, band 11, and band 12) were stacked 
together using ArcGIS version 10.6 to form the four Sen-
tinel-2 images used in this research. The corrected images 
were classified using a Deep Neural Network (DNN).

Deep learning models
A Deep Neural Network (DNN) algorithm that uses mul-
tiple artificial neural networks and has the capability to 
model complex non-linear objects (Hu et  al. 2016). DL 
can (a) extract features directly from the dataset; (b) use a 
deep network to learn hierarchical features; and (c) auto-
mate predictions, making it more robust and generalized 
than traditional ML classifiers (Biffi et al. 2021; Ukwuoma 
et al. 2022). DL methods have high complexities and are 
designed to solve complex problems with non-linear 
transformations (Biffi et al. 2021; Bargiel 2017).

The study employed Keras Python 3.6.13 libraries on 
top of Tensorflow 2.4.1 using an interactive Jupyter Note-
book to implement the DNN model. Typically, the DNN 
model architecture is determined using four parameters, 
namely, the number of neurons, the number of layers, the 
learning algorithm, and the activation function. For the 

Fig. 3 The location distribution of fruit trees and other co-existing land-use types in the Levubu sub-tropical fruit farming area. The RGB bands 
represent S2 image downloaded from the European Space Agency
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study, three layers/neurons, one input layer consisting of 
10 classes, two hidden layers, and one output layer con-
sisting of 10 classes. The layers were added sequentially 
to identify the best network architecture—all neurons 
were activated to achieve the best model performance 
using the ReLu and SoftMax activation functions (Tian 
et  al. 2019a). The transfer learning approaches were 
applied by fine-tuning the model using different image 
batch sizes of 10, 50, and 100. The model performance 
was optimized by applying the glorum_uniform, which 
draws samples from a uniform distribution (Amani et al. 
2020). Furthermore, other optimization functions such 
as ADAM, RMSprop, and SDG were tested with a learn-
ing rate of 0.1 and 1 to identify the differences between 
in-situ data and network outputs (Loss Function) 

(Ukwuoma et al. 2022; Li et al. 2022). Different iterations 
with 50 and 100 epochs were tested to identify the model 
that would be more sensitive to fruit- trees and co-exist-
ing land use types and give the best classification accu-
racy (Amani et al. 2020). The dropout rate was set to 0,0.3 
and a ‘max’ mode was used for early stopping when the 
model accuracy stopped improving. The trained models 
were assessed using the test dataset. The loss and accu-
racy of the training and validation data were recorded, 
and the optimum overall accuracy was computed at the 
last batch/epoch (Xiong et al. 2022).

Accuracy assessment
Accuracy assessment is the process of evaluating the 
classification results as a way of assessing the reliability of 

Fig. 4 The variations in temporal spectral reflectance curves of within-season phenological stages of fruit trees and other land use types derived 
from Sentinel-2 multispectral images acquired over a different time range (April, May, June, and July). All fruit trees and their co-existing land use 
types are plotted together
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the classification approach proposed in research (Amani 
et  al. 2020). The results of this research were assessed 
using a confusion matrix which was calculated using test 
samples (30% of the dataset) (Amani et al. 2020). The per-
formance of the DNN model in classifying the optimal 
images was assessed by computing the performance eval-
uation metrics user’s accuracy (UA), producer’s accuracy 
(PA), and overall accuracy (OA) which were computed 
from the confusion matrix of the four DNN models 
applied in the study.

Results
Overall accuracies of the DNN models
Figure  5 presents the accuracy and loss curves on the 
validation and training datasets of Model 1 (April 
image), Model 2 (May image), Model 3 (June image), and 
Model 4 (July image). The curves show the relationships 
between model accuracy and loss function, indicating 
the performance and stability of the models across the 
datasets were tested using 100 epochs. In all models, the 
learning curves are smooth, suggesting that the models 
were robust in learning the data and had the capacity to 

Month Model accuracy versus the number of epochs Loss function versus the number of epochs

Ap
ril

Ma
y

Ju
ne

Ju
ly

Fig. 5 Comparison of the variation of model accuracy and loss function curves with increasing epochs on the prediction of the DNN models tested 
in different phenological stages of the fruit trees during April (Model 1), May (Model 2), June (Model 3), and July (Model 4)
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produce promising results. A direct correlation is observ-
able between the training and testing data.

In April, the loss function of the DNN model is around 
40 epochs and stabilizes around 60 epochs. In May, the 
loss started at epoch 40 and saturated around 57 epochs. 
The loss started at 5 epochs and saturated early at around 
49 in June. A similar trend was observed in July, where 
a loss was experienced at three epochs and reached a 
maximum performance at around 67 epochs. In terms 
of accuracy, the May model achieved a superior perfor-
mance of 87% compared with the other models, indicat-
ing that the recall and overall precision performance of 
the DNN model in May were better than in the other 
months (April, June, and July).

Performance of the classification models
The overall classification accuracies of the models fol-
lowed a similar order of 88.64%, 87.25%, 86.96 and 
87.25% (Figure  6). The kappa coefficient values ranged 
from 86% to 88% for May to July, respectively. The May 
image was decisive and made an important contribution 
towards identifying the fruit trees and co-existing land 
use types.

Figure 7 shows the validation results of each fruit-tree 
species and co-existing land use types. These figures 
show that better class accuracies were achieved using the 
images from late autumn (May) and late winter (July).

In April (Fig.  7A), the producer accuracy (PA) ranged 
from 64.76 to 98.66% for the avocado (AV) and woody 
vegetation (WV), respectively. The other crops (i.e., 
banana (BN), bare soil (BS), build-up (BU), pine tree 
(PT), macadamia nut (MN), and water body (WB) had a 

PA accuracy of 90% and above. The user accuracy (UA) 
ranged from 62.96% for the avocado class to 98.66% for 
the BU class.

In May (Fig. 7B), the PA ranged from 64.95 to 100%, 
with the AV class recording the lowest while the WB 
class had the highest. An increase was observed for all 
classes except for the BU, MN, and WB. The PA for the 
BU class decreased by 1.23%. The UA increased for all 
classes ranging from 70.79 to 99.37%.

In June (Fig. 7C), the PA ranged from 67,39 to 98.01%. 
The UA decreased from 83.01% to 72% for the GV class, 
while for the mango (MG) and BN classes, it decreased 
from 84.75 to 75,23%, and 96.83 to 93.24%, respectively. 
The UA ranged from 65.96 to 96.88 for the WB class. 
There was a decrease in UA values recorded for AV, BU, 
GV, MN, PT, WB, and MN.

In the July image (Fig.  7D), the PA ranged from 68 
to 99%, while the UA ranged from 65 to 100%. The PA 
value for the avocado crop was 67.33%, indicating that 
32.67% of pixels, attributed to avocado, were misclassi-
fied. The UA values ranged from 65 to 100%, showing 
an increase for the BN, GV, MN, MG, and WB.

Mapping outputs
A DNN model was applied to four Sentinel-2 monthly 
images (April, May, June, and July) and used to distin-
guish the presence of fruit trees and surrounding land-
use types in subtropical farms in Levubu, South Africa.

Figure  8 shows pixel-based classification maps pro-
duced using four optimal Sentinel-2 images acquired 
in April to July and classified using the DNN algorithm. 
The proposed approach made it possible to distinguish 

Fig. 6 Relationship between the model accuracy and the loss function, showing the stability of the models across the tested 100 epochs
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Table 4 Confusion matrices for the fruit trees and co-existing land use types in four growing months (April, May, June, and July).

Class (A) DNN APRIL

AV BN BS BU GV MN MG PT WB WV Total

AV 68 3 1 1 11 9 12 0 0 3 108

BN 3 141 1 0 2 0 3 0 0 0 150

BS 2 1 79 1 0 1 0 0 0 2 86

BU 0 0 0 147 1 0 0 0 1 0 149

GV 6 1 1 0 56 0 4 0 0 0 68

MN 12 0 0 0 0 76 13 6 0 1 108

MG 9 0 0 0 4 11 105 1 0 1 131

PT 1 0 0 0 0 2 0 135 0 3 141

WB 0 0 1 0 0 0 1 0 30 1 33

WV 4 0 2 0 1 1 4 6 0 197 215

Total 105 146 85 149 75 100 142 148 31 208 1189

OA: 86.96%

kappa: 86%

(B) DNN MAY

Class AV BN BS BU GV MN MG PT WB WV Total

AV 63 2 0 1 3 12 7 1 0 0 89

BN 6 122 0 0 1 2 1 0 0 0 132

BS 1 1 82 2 3 0 0 3 0 1 93

BU 0 0 0 158 1 0 0 0 0 0 159

GV 11 0 0 0 59 1 2 0 0 1 74

MN 10 1 0 0 0 88 7 2 0 5 113

MG 4 0 0 0 2 11 100 2 0 6 125

PT 0 0 1 0 2 4 1 152 0 5 165

WB 0 0 0 0 0 0 0 0 32 1 33

WV 2 0 0 1 0 1 0 1 0 198 206

Total 97 126 83 162 71 119 118 164 32 21 1189

OA: 88.65%

kappa: 88%

Class (C) DNN JUNE

AV BN BS BU GV MN MG PT WB WV Total

AV 51 1 0 1 11 6 9 0 0 3 94

BN 0 138 2 1 0 2 4 0 0 0 148

BS 0 3 75 1 2 0 0 2 2 0 85

BU 0 0 1 148 2 0 0 0 0 0 151

GV 8 1 0 0 54 0 4 0 0 2 72

MN 16 1 0 0 0 78 6 5 0 4 110

MG 4 3 0 0 5 11 82 0 0 3 108

PT 0 0 4 0 0 5 1 152 0 4 166

WB 0 0 0 0 0 0 0 0 32 1 33

WV 1 0 2 0 1 4 3 2 1 208 222

Total 92 148 82 151 78 106 109 161 35 225 1189

OA = 86.80%

Kappa = 0.86%
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and classify fruit trees and co-existing land use types. 
As depicted in 6A, the pine trees are preferentially 
found in high-elevation areas on the northern side of 
the research area. During this month, the avocado crop 
overlapped with the macadamia nut (MN) guava (GV), 
and mango (MG) crops resulting in high spectral con-
fusion between the classes (Table 4A). This could have 
been attributed to the fact that some of the avocado cul-
tivars (Hass, Ryan) are fruiting, while the (Fuerte culti-
var) is in the senescence stage and the AV (Pinkerton 
cultivar) is in the harvesting stage. These phenological 
stages coincide with the senescence stage of the mango 
crop and some macadamia nuts (A4,814,816,344) while 
the Beaumont 695 and Nelmark 2 cultivars are in their 
harvesting stages (Table 1).

In Fig.  8B, the classification during May showed mis-
classification between banana (BN), MN, and MG 
although the spatial distribution is similar to April. How-
ever, it is evident in Table  4B that 11, 10, and 6 pixels 
belonging to the avocado crop were misclassified as GV, 
MN, and BN, respectively. Furthermore, pixels 12, and 11 
belonging to the mango crop were misclassified as avo-
cado and woody vegetation (WV), while 6, 5, and 5 pixels 
of the WV class were misclassified as mango, guava, and 
macadamia nut, respectively. In Fig.  5, it was observed 
that there are spectral similarities between these classes 
due to overlapping phenological stages. The spectral 

similarities emanated from the senescence stage of the 
mango crop which coincides with the senescence stage of 
the majority of the MN varieties (A4, 814, 816, 344) and 
that of the avocado, specifically the Fuerte cultivar.

The image acquired in June (Fig. 8C) was able to detect the 
banana and mango crops located within the built-up areas 
on the southern side of the study area, which decreased 
the spectral confusion between the crops (Table 4C). How-
ever, spectral confusion was observed within the avocado, 
mango, and guava crops. The AV (Hass) cultivar was in the 
harvesting stage, and the AV (Fuerte, Pinkerton) cultivars 
together with GV, MN (Beaumont 695), and MG (Keitt) 
were in their senescence stages, while the AV (Ryan) vari-
ety, the BN and MN (Nelmark 2, A4, 814, 816, 344) and MG 
(Sabre cultivar) were in flowering stages.

Figure  8D shows the spatial distribution of the fruit 
trees in July. It was observed from the confusion matrix 
that 11, 10, and 9 pixels corresponding to the avocado 
crop were misclassified as mango, guava, and macadamia 
nut, respectively (Table 4D). During this month, all crops 
were in their fruiting and flowering stages except for the 
MN (Keith cultivar), the GV, and the AV (Hass, Fuerte) 
cultivars. Overall, all fruit trees were accurately detected 
during the wet season (i.e., June and July) as they cor-
respond to the flowering and fruiting seasons which are 
easily detected by the optical sensor due to the high pres-
ence of the chlorophyll and water contents in leaves.

Table 4 (continued)

Class (D) DNN JULY

AV BN BS BU GV MN MG PT WB WV Total

AV 68 2 0 1 10 9 11 0 0 3 104

BN 3 108 3 1 3 1 0 0 1 0 120

BS 2 0 73 0 0 0 0 2 0 0 77

BU 1 0 1 161 0 0 0 0 0 0 163

GV 3 0 3 0 50 2 1 0 0 0 59

MN 11 0 2 0 0 91 15 2 0 1 125

MG 9 0 0 0 2 13 90 0 0 5 119

PT 1 0 0 0 0 7 1 142 0 5 156

WB 0 0 0 0 0 0 0 0 33 0 33

WV 3 0 0 0 0 2 2 5 2 219 233

Total 101 110 82 163 65 128 120 151 36 233 1189

OA = 87.30%

Kappa = 86%

The land use classes are namely, AV avocado, BN banana, BS bare soil, BU built-up, GV guava, MN macadamia nut, MG mango, PT pine tree, WB water body, WV woody 
vegetation
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Fig. 7 The User Accuracy and Producer Accuracy of the fruit trees and co-existing land use types in four growing months (April, May, June, 
and July)
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Figure  9, shows the visual enhancement through the 
provision of zoomed-in maps of the regions with clas-
sification irregularities (Figure  9: inset a, b, and c). The 
first inset region (Fig. 9, insert (a)) is located in the north-
western part of Levubu, where mountains and irregular 
patches of pine trees exist. The approach applied made it 
possible to distinguish pine trees from woody vegetation. 
The dominant fruit trees were avocado and macadamia 
nut. Similarly, the applied approach was able to classify 
the fruit trees in the central north of Levubu [Fig. 9, May, 
insert (b)]. The guava, avocado, mango, and pine trees 
have dominated this region. Furthermore, the approach 
was also effective in classifying fruit and co-existing land 
use areas in the northeastern part of Levubu [Fig. 9, June, 
insert (c)]. This region is dominated by banana, guava, 
and avocado.

In Fig.  9, insert (a), located in the Southeastern part 
of the study area, shows the differences in the detection 
of the guava crop across the four months. However, in 
April, a few pixels of the guava crop were detected by the 
model. In May, June, and July, more pixels of the guava 
crop were detected as depicted on insert b-c, however, 
some of the bare soils and avocado and woody vegeta-
tion classes. The central part of the study area, depicted 
by inserts (b), shows the spectral confusion between the 
guava, avocado, and woody vegetation in April and May, 
while in June and July, the same areas are correctly clas-
sified as guava, avocado and macadamia nut. On insert 
(c), some of the pixels of the woody vegetation were mis-
classified as guava and built-up areas during June. How-
ever, the water features present around those areas were 

Fig. 8 Discrimination results for fruit trees and co-existing land use types by DNN and Sentinel-2 images acquired in A April, B May, C June, and D 
July
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detected in July, while they were slightly detected in April 
to June image acquisitions.

Discussion
Overall classification accuracies
Fragmented smallholder landscapes dominated by fruit 
trees with similar spectral characteristics present dif-
ficulties in terms of the performance of machine learn-
ing classifiers. This situation can be overcome through 
the application of DL models and new-generation sen-
sors with a high temporal and spatial resolution such as 

Sentinel-2 (Lanaras et al. 2018). The research constituted 
an investigation into the utility of using Sentinel-2 (S2) 
optimal multispectral data and phenological information 
integrated with DNN for mapping heterogeneous fruit 
trees and co-existing land use types in Levubu, South 
Africa. The performance of S2 multi-temporal images 
across crop growth season was compared using the over-
all accuracy, user, and producer accuracies. The approach 
produced satisfactory results, and superior results of 
88.64% OA were achieved for the month of May. As 
shown by the results in  Fig.  6, the model performance 

Fig. 9 Fruit tree maps obtained using DNN with some zoomed spots showing the spatial structure of the classified fruit crops and co-existing 
land use types based on Sentinel-2 images across growing seasons in April, May, June, and July. The a–c depicts the zoomed areas of three sites 
with major classification differences obtained using the DNN classifier across the four months considered in this study
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was not affected by the image acquisition gaps from 
April to July, corroborating findings by Zhou et al. 2022. 
In their research, an OA of 91% was achieved using the 
ANN model, constituting an 8% improvement on the RF 
results. The accuracy obtained in the research is compa-
rable with the study by Pena et al. (2017), who obtained 
85.56% when classifying crop types using DL and Senti-
nel-2-time series data. In this research, the spectral fea-
tures extracted in late winter (July) contributed 0.87%, 
whereas those extracted in early autumn (April) and early 
winter (June) contributed 86.96% and 86.8% to the clas-
sification model. Although the research produced various 
accuracies, an OA of 80% and above was achieved in both 
months. This suggests that the optimal period for map-
ping fruit trees in Levubu is autumn to winter (i.e., April 
to July). Similar to observations in Paris et al. (2020), the 
OA was low during the early seasons of crops, but an 
increase in OA was achieved as the seasons progressed. 
Identifying the optimal window period has proven to be 
an alternative to the utilization of all-time series images 
present in the year. The results are comparable with stud-
ies that used image composites from time series data 
(Kordi and Yousefi 2022b; Vuolo et al. 2018).

Comparison of spatiotemporal accuracies of individual 
classes
In terms of individual class accuracies, better results were 
achieved for specific crops (Fig.  7 and Table  4(A–D)). 
The spectral differences with respect to fruit trees were 
large in late autumn and late winter, as most of the fruit 
trees were in the vegetative stage (flowering and fruiting). 
The early seasons are characterized by low vegetation 
cover and high reflectance originating from the soil back-
ground, and they provide little contrast between crops 
and their spectral differences (Vuolo et al. 2018). In May, 
the banana and mango crops begin production and seed 
development, while macadamia nut and mango begin to 
senesce. The structural differences were evident in May, 
with the banana and avocado crops (Ryan) cultivar in 
fruit development while the macadamia nut (Beaumont 
695) cultivar, avocado (Pinkerton and Hass) cultivars, and 
guava crops were in the senescence and harvest stages. 
Similar to what was reported by Vuolo et al. (2018), low 
accuracies were obtained using the image acquired in 
June. The low accuracies for the avocado crops in the 
tested months are attributed to the sensitivity of the 
DNN model and the robustness of the applied classifica-
tion approach to subtle changes.

In contrast, the differences in the spectral reflectance 
of types of fruits were more prominent later in the grow-
ing season due to green vegetation, increased moisture 
content, and canopy structure (McNairn et  al. 2009). 
Similarly, to our findings, the research by McNairn et al. 

(2009) reported the significance of late growing season 
optical acquisitions for crop discrimination. Applying 
spectral features at different times increased the distinc-
tion between fruit trees and co-existing land use types 
(Amani et al. 2020).

The change in the fruit tree canopies was not 
detected in April but was indistinctly captured in May. 
This emphasizes the need for phenological informa-
tion captured by Sentinel-2 (S2) data due to its high-
frequency interval. The temporal resolution of the S2 
data makes it possible to detect these variations at the 
fruit-tree level. Corroborating findings by Zhou et  al. 
2022, the accuracy for the mango crop was lower than 
for the other fruit trees, which was expected because of 
the S2 image resolution. In June and July, the banana, 
and avocado crops (Ryan cultivar) are in the vegeta-
tive stage with maximum biomass, as they are fruiting, 
while the biomass of avocado and guava crops is declin-
ing, as they are in the senescence and harvesting stages. 
During these stages, the sparse canopy correlates with 
less vitality in guava crops, while dense canopies relate 
to high vitality in pine trees (Bai et al. 2016). For exam-
ple, the optical image acquired in May permitted the 
best classification of the banana and the guava crops, as 
they were at the greenup and full canopy stage, which 
correlates with maximum photosynthesis (Schirrmann 
et  al. 2016). At the senescence stage, the leaves have 
low water content, leaf area index, and dry biomass (Bai 
et al. 2016). The results indicate the phenology stage in 
which each fruit tree type is best distinguished accord-
ing to the crop calendar, making optimization of the 
imagery collection schedule possible (Paris et al. 2020). 
The crop classification in winter (May–July) detected 
the within-class variations emanating from fruit-trees 
structure, local calendars, and different management 
strategies (Paris et al. 2020).

Although satisfactory results were achieved for all four 
months, the UA and PA for the avocado crop were low. 
This might be attributed to differences between avocado 
varieties, exacerbated by mixed pixels arising from spec-
tral similarities among the different fruit trees grown in 
the area, as cited in previous research on fruit trees (Cha-
balala et  al. 2023a, 2023b, 2022). Furthermore, prioritiz-
ing the image acquisition based on the phenological stage 
increases the chances of the crops being spectrally dis-
tinguished with high accuracy (Pan et  al. 2021). Figure  4 
shows a high spectral overlap between the land use classes 
at different months, which challenged the classification 
accuracy. This was evident on the classification map (Fig. 8) 
and the confusion matrix (Table 4(A–D)), where misclas-
sifications were observed. Overall, spatial and accuracy 
variations were observed between fruit trees and within 
cultivars, which further complicates the mapping process.
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The spatial distribution maps
The seasonality of fruit trees and co-existing land use 
types were analyzed by producing spatial distribution 
maps for a period of 4 months covering different crucial 
growth stages. From Fig. 8, a shifting pattern in the spatial 
distribution of the mapped fruit trees and co-existing land 
use types is apparent. The April and May images underes-
timated the avocado crop, while the same crop was over-
estimated in early and late winter (June and July). In late 
autumn (May) reasonable spatial patterns were generated 
that concur with the researcher’s knowledge.

On the northeastern side, the optimal time to sepa-
rate the avocado from other fruit trees appears to be late 
May, when vegetation reflectance dominates the optical 
signals. The low classification results for avocados were 
associated with April and May acquisitions, suggesting 
that for increased accuracy, the mid to late-season optical 
acquisitions must be included in the classification. Unlike 
ML, DL models are consistent with regard to accuracy, 
as witnessed in this research, rendering them suitable for 
large-scale mapping (Pan et al. 2021).

The pigmentation, structure, and water content of 
crops change during their phenological stages from 
flowering to harvesting. The optical data are sensitive 
to differences in vegetation canopies (Tian et al. 2019b). 
Furthermore, the clustering densities of fruit trees vary 
within phenological stages (Tian et  al. 2019b). During 
the fruiting stage, fruits have different sizes and colors 
and have sparse distribution (Saedi and Khosravi 2020). 
The volume of fruit trees is large during the flowering 
period, the leaf color changes and the clustering density 
decreases after harvesting due to pruning and other man-
agement strategies (Saedi and Khosravi 2020). The effec-
tiveness of the spectral reflectance decreases as fruits 
mature and senesces before harvest based on fruit vari-
ety and farmers’ management strategies (Asgarian et  al. 
2016). Depending on the aim of the farmers’ assessments, 
the zoom-in maps become useful for other agricultural 
operations such as crop change monitoring, irrigation 
scheduling, and fruit disease scouting. For agricultural 
management and food security, the classification maps 
produced through the research reported on in this article 
could support the development of appropriate manage-
ment strategies that will increase food production.

Limitations
Deep Learning is computationally extensive and requires 
a large amount of labeled ground truth data and cadastral 
datasets to train the network; however, these datasets are 
very scant in Africa. The developed mapping tool can be 
transferred to other areas with similar geographic land-
scapes. However, model uncertainties will always exist 

because the overall model accuracy is pixel-specific and 
geographically specific and often varies per training data 
set.

Conclusion
The research developed a DNN-based mapping tool to 
improve the classification of fruit trees and co-existing 
land use types in a smallholder horticulture system in 
Levubu, Limpopo Province. The developed mapping tool 
identified the optimal phenological stages, at which the 
fruit trees peak production, and assessed how the DNN 
accuracy behaves across seasons. It was discovered that 
the developed mapping approach is robust and resilient 
to variations in climate, farming management strategies, 
and crop growth conditions as it considers both pheno-
logical stages and the growing period of fruit trees. Given 
the complex cropping systems in Levubu sub-tropical 
sites, individual classes were well classified. Regardless 
of the complexity of the cropping systems in Levubu, the 
mapped ten classes were distinguished with an overall 
accuracy of 89% and a kappa coefficient of 88%.

The findings suggest that selecting optimal image acqui-
sition is important in discriminating crop types. The 
accessibility of optical imagery with high spatial resolu-
tion and temporal coverage is suitable for per-field crop 
type mapping and continuous refinement of spectral–
temporal profiles for common crop types in different 
agronomic regions. This is expected to improve the clas-
sification accuracy of crop-type maps using these profiles. 
The research highlights the importance of Sentinel-2 data 
and deep learning models in mapping fruit trees and co-
existing land use types in smallholder food systems for 
enhanced decision-making and the development of resil-
ient food systems that will enable the attainment of food 
security. The application of phenological information 
derived from optimal S2 images showed high potential 
for fruit tree crop classification in fragmented sub-tropi-
cal regions. The results can be used as a valuable tool to 
develop sustainable horticultural management practices 
for the regulation of fruit tree crops in complex agricul-
tural landscapes under different environmental conditions.
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