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Abstract 

Plant growth and productivity are greatly impacted by temperature stress, both high and low. These stresses impair 
biochemical, physiological, and molecular processes in the plant, eventually affecting plant growth, development, 
and productivity. Consequently, novel approaches are needed to overcome these problems and achieve sustain-
ability. Nanotechnology is one such novel approach to improving crop production, by using nanoscale products. 
Nanoparticle size, nature, application mode, environmental conditions, rhizospheric and phyllospheric environ-
ments, and the species of plant make a significant impact on their action. With their easy soluble nature, smaller 
size, and excellent ability to penetrate plants, and their ability to cross cellular barriers, nanoparticles have become 
an increasingly popular agricultural tool. It has recently been observed that silver, silicon, titanium, and selenium 
nanoparticles can alter the physiological and biochemical response of plants in order to counteract high or low 
temperature stress. In this review, a description is provided of how nanoparticles are absorbed in different plant parts 
and how they are translocate along with the factors that influence their uptake and translocation. Also how plant 
response to nanoparticles in temperature stress and the various types of physiological, morphological, anatomical, 
biochemical and molecular modifications caused by nanoparticles. The review is going to provide researchers in agri-
cultural sciences a glimpse into how to discover new nanoparticles to deal with heat stress.
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Introduction
Temperature stress affects plant growth, development, 
and ultimately crop productivity, making it a major chal-
lenge to global agriculture. In plants, temperature is one 

of the major abiotic stresses that limit growth and pro-
duction (Hedhly et  al. 2009). When plants are exposed 
extreme temperatures, they suffer from severe adverse 
effects, and sometimes even die. It is for this reason that 
plants have evolved sophisticated mechanisms to deal 
with temperature extremes. For instance there are sev-
eral physiological processes affected adversely by heat 
stress, including respiration, transpiration, membrane 
thermo stability, and osmotic regulation (Liu et al. 2020, 
Akter et  al. 2017). The presence of heat stress generally 
reduces photosynthetic efficiency, shortening the life 
cycle and decreasing productivity of plants (Hasanuzza-
man et  al. 2013; Hu et  al. 2020a, b; Kumar et  al. 2020). 
Yet, while much focus has been on addressing heat stress, 
the impact of low-temperature episodes, exacerbated 
by climate change, cannot be overlooked. Extremely 
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low  temperatures also have a significant effect on plant 
growth through physiological, anatomical, and morpho-
logical changes that alter nutrient uptake, root archi-
tecture, cell division, photosynthesis, water transport, 
and phytohormonal signaling (Ahmed et  al. 2024). It is 
therefore a goal of Germplasm scientists and agrono-
mists to develop extreme temperature tolerant varieties 
or cultivars in order to adapt to these effects and reduce 
their impact. A combination of conventional breed-
ing techniques and physiological and biotechnological 
tools might be used to select and develop heat-tolerant 
genotypes that are more productive (Saeed et  al. 2023). 
In recent years, advances in agricultural nanotechnol-
ogy have raised expectations for sustainable productiv-
ity without altering the genetic make-up of plants. The 
study of nanotechnology is the field of material science 
that is the most dynamic, and nanoparticle (NP) produc-
tion is rising quickly globally. Because of certain char-
acteristics like size (1–100  nm), shape, and structure, 
nanoparticles exhibit entirely new or improved proper-
ties (Nejatzadeh 2021; Taran et al. 2017). The two types of 
nanoparticles that can be synthesized are inorganic and 
organic. Metallic nanoparticles like Au, Ag, Cu, Al, mag-
netic nanoparticles like Co, Fe, Ni, and semi-conductor 
nanoparticles like ZnO, ZnS, and CdS are examples of 
inorganic nanoparticles, whereas carbon nanoparticles 
like chitosan, cellulose acetate, quantum dots and carbon 
nanotubes are examples of organic nanoparticles (Taran 
et al. 2017; Chouhan 2018; Wang et al. 2021; Lima et al. 
2022). These NPs can be used to produce sustainable 
crop yields because nanoparticles have unique properties 
(Nejatzadeh 2021, Parisi et  al. 2015) such as more sur-
face area, which increases the availability and promotes 
greater uptake of fertilizers by plants. This decreases 
fertilizer losses from leaching, emissions, and long-term 
incorporation by soil microorganisms (Liu et  al. 2006, 
DeRosa et  al. 2010). A novel method of increasing crop 
heat tolerance could be using biologically active nanopar-
ticles (NPs). Recent research has demonstrated that NPs 
from silver, silicon, titanium, and selenium can signifi-
cantly alter the physiological and biochemical responses 
of plants under heat stress. Many researchers have peri-
odically conducted a number of studies to determine 
whether nanomaterial’s can be used to reduce tempera-
ture stress. Application of selenium nanoparticles in low 
concentrations has been found to mitigate the effects of 
heat stress by enhancing plant development, chlorophyll 
content, and hydration (Haghighi et al. 2014). Addition-
ally, plants can benefit from the antioxidative properties 
of selenium nanoparticles at low concentrations, whereas 
oxidative stress was brought on by selenium nanopar-
ticles at high concentrations (Hartikainen et  al. 2000; 
Hasanuzzaman et al. 2014). During times of heat stress, 

plants produce a number of molecular chaperones and 
heat shock proteins (Schulze et  al. 2005). Heat shock 
proteins help other proteins maintain their fidelity in 
stressful situations and are involved in the resistance to 
heat stress (Wahid et  al. 2007). Multiwall carbon nano-
tubes have been shown to increase the gene expression 
of heat shock proteins, such as HSP90 (Khodakovskaya 
et al. 2011). Furthermore, maize plants that were exposed 
to  CeO2 nanoparticles showed excessive  H2O2 produc-
tion and up regulation of HSP70 (Zhao et  al. 2012a, b). 
Additionally, the use of  TiO2 nanoparticles via stomata 
opening regulation lessened the impact of heat stress (Qi 
et al. 2013). Therefore, this study aims to investigate, how 
nanoparticles are being absorbed by plants and its trans-
location mechanisms, how plants respond to nanoparti-
cles in temperature Stress, the various modifications like 
physiological, morphological, anatomical, biochemical 
and molecular caused by nanoparticles. The phytotoxic 
effect of nanoparticles on plants and how plants grow 
under both natural and environmental stress conditions 
has also been discussed.

Plant nanoparticle absorption and translocation
Nanomaterials have garnered escalated interest in recent 
times owing to their distinctive physical and chemical 
characteristics, enabling their utilization as multifaceted 
materials. The application of nanomaterials in the agri-
cultural sector for enhancing crop yield and environmen-
tal preservation has surfaced as an urgent requirement. 
Using nanoparticles to enhance crop growth involves a 
number of techniques, including root application, foliar 
application, and seed priming. Finding out the best way 
to apply nanoparticles and whether they can reach dif-
ferent plant tissues from the root to the shoot are highly 
interesting questions.Several factors contribute to the 
effects of nanoparticles, such as their size, composition, 
method of application, surrounding conditions, as well 
as the rhizospheric and phyllospheric settings, and the 
specific plant species. To successfully traverse cell barri-
ers and membranes, nanoparticles must possess specific 
chemical, physical, and dosage characteristics, among 
other essential attributes. Surface chemical reactions 
such as ion exchange, surface precipitation, and physi-
cal adsorption are among the commonly observed pro-
cesses for the uptake of nanoparticles (Singh et al. 2021). 
For instance, at the plant cell wall, the initial interaction 
between nanoparticles and plants takes place. The plant’s 
cell wall is equipped with numerous pores, ranging in 
diameter from 5 to 20 nm, which govern particle mobility 
and contribute to the plant’s filtration capabilities. Nan-
oparticles falling within this diameter range can readily 
penetrate plant cells. Conversely, nanoparticles of larger 
diameters engage with proteins and polysaccharides in 
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cell walls, leading to the formation of novel pores and 
pathways for entry (Ali et al. 2021, Alnaddaf et al. 2023, 
Farooq et  al. 2024). It has been reported that osmotic 
pressure, capillary forces, and direct passage through 
the root epidermis are some of the reasons why small 
nanoparticles (size 3–5  nm) enter plant roots. Large 
nanoparticles cannot pass through the semipermeable 
epidermal cells found in the walls of root cells because 
of their small pores. Certain nanoparticles were discov-
ered to induce the formation of new pores in epidermal 
cells, allowing the particles to enter the cells. (Nag et al. 
2024, Arumugam et  al. 2023, Rehman et  al. 2024.The 
process of absorption of metal nanoparticles by plants 
involves ion exchange, chelation, chemical precipita-
tion, and endocytosis (Maine et  al. 2001; Tani and Bar-
rington 2005, Aslani et al. 2014, Hong et al. 2021, Zhang 
et al. 2024). Additionally, ion transporters, such as carrier 
proteins, aquaporins, and ion channels (Somasundaran 
et  al. 2010; Yadav et  al. 2014, Ahmad et  al. 2022, Omar 
et al. 2023), have been observed as alternatives for metal 
nanoparticles uptake by plants. We can enhance our 
comprehension of the penetration of nanoparticles into 
cells by gaining insights into the lipid exchange process 
occurring between the nanoparticles and the cell enve-
lope, as elucidated through the utilization of a math-
ematical framework known as Lipid Exchange Envelope 
Penetration (LEEP) (Wong et  al. 2016; Lew et  al. 2018; 
Wang et  al. 2019a, b; Arya et  al. 2021).. Plants uptake 
nanoparticles by traversing through the epidermis, cyto-
plasm, and nucleus within their cellular structure. The 
alteration of nutrient absorption may occur if nanopar-
ticles initially not absorbed on the root surface of soil 
aggregates. Nanoparticles have the capability to infiltrate 
through the coat by means of parenchymatic intercellular 
spaces, subsequently diffusing within the cotyledon, and 
ultimately penetrating the seed coat directly. (Nair et al. 
2010a, b, Wang et  al. 2012, Banerjee et  al. 2019, Singla 
et al. 2019, Ramírez Anguiano et al. 2023). The targeted 
tissue is reached by the nanoparticles via both apoplas-
tic and symplastic pathways. According to several stud-
ies (Schwab et  al. 2016a, b, Pérez-de-Luque et  al. 2017, 
Hubbard et  al. 2020, Wu et  al. 2022) the corresponding 
membrane carrier protein typically makes it easier for the 
nanoparticles to pass through xylem channels.Addition-
ally, nanoparticles need to get ahead of the stomata and 
cuticle in order to access the leaf ’s internal system. The 
cuticular pathway is followed by particles smaller than 
5  nm, while the latter pathway is followed by particles 
larger than 5 nm. The internal transportation system of a 
leaf is similar to that of roots. According to Ruttkay-Ned-
ecky et al. (2017), Millán-Chiu et al. (2020), nanoparticles 
enter leaves through cuticle, stomata, hydarhodes, and 
wounded tissues. They are then transported by phloem 

tubes via apoplastic and symplastic pathways to the 
desired location or organs, such as shoots, roots, and 
fruit. The penetration of nanoparticles is followed by the 
processes like endocytosis, pore formation and some of 
the carriers proteins also participate during the process 
(Zhang et al. 2024). Before nanoparticles are being taken 
by the plants, it interacts with soil and soil microorgan-
isms. The complete illustration of the translocation pro-
cess has been presented in the Fig. 1.

Mechanism of absorption of nanoparticles in plant roots
The mechanisms of nutrient and ion uptake into the 
root cytosol are simple diffusion, facilitated diffusion, 
and active transport, which all work by generating an 
osmotic potential across the membrane. Currently, the 
two most well-known mechanisms for root uptake are 
apoplast and symplast transport. In symplast transport, 
plasmodesmata are utilised to transfer ions or water 
between the cytosol of plant cells. In apoplast transport, 
the region of continuous cell walls found inside cells is 
used (Doran et al. 2013, Aslani et al. 2014, López-Val-
dez et  al. 2018, Bhatla et  al. 2023). It is still unknown 
how different NPs cross the plant membrane—through 
endocytosis or through aquaporins and plasmodes-
mata channels, and when they move using symplastic 
pathways. Even though different NPs can travel long 
distances through the xylem (from roots to leaves) and 
the phloem (from leaves to roots), it is still unknown 
how the NPs cross the plant membrane—through 
endocytosis, through aquaporins and plasmodesmata 
channels, and when they move using symplastic path-
ways (Tripathi et  al. 2017a, b). The highest leaf-root 
transport is observed for the most soluble NPs (Schwab 
et  al. 2016a, b), suggesting that transport and solubil-
ity are related. Avellan et  al. (2019) demonstrated that 
Au-NP transport from wheat leaves to roots is feasible 
and that Au-NPs smaller than 50 nm were exuded into 
the soil, regardless of their coating and sizes. In another 
study AgNPs of 40 nm were discovered accumulated in 
and around Arabidopsis root tip regions such as bor-
der cells, columella cells, root cap, axial/lateral root 
cap, and epidermis. The follow-up studies proposed 
that AgNPs were initially attached to the Arabidop-
sis primary roots surface during the initial phases of 
NPs exposure and later entered the root tips (Geisler-
Lee et al. 2014, 2012; Schwab et al. 2016a, b; Zhai et al. 
2014). Comparably, before entering the epidermis and 
after penetrating the root cortex of maize plants, a high 
concentration of ZnONPs aggregates was seen. In the 
root endodermis and later closer to the Casparian strip, 
a trace amount of ZnONPs aggregate was also detected 
(Schwab et al. 2016a, b; L. Zhao et al. 2012a, b) (Fig. 2).
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Mechanism of foliar uptake of nanoparticles by plants
When used in agriculture, nanoparticles are usu-
ally sprayed onto the leaf surface where they deposit. 
From there, the plants absorb the particles through 
their stomata or cuticle (Yashveer et  al. 2022). Plants 
need time to absorb and disperse NPs, which are pri-
marily absorbed through foliar and root uptake by the 
xylem and phloem systems after being first taken up by 
the leaves or roots of the plant. The two most preva-
lent foliar uptake pathways are stomatal and cuticu-
lar. The cuticular pathway is composed of two parallel 
pathways: the lipophilic and hydrophilic uptake path-
ways. While the lipophilic pathway involves the diffu-
sion of lipid-loving apolar and non-charged molecules 
in cutin and waxes, the hydrophilic pathway involves 
the dissolution of water-loving polar or ionic molecules 
through aqueous pores with a diameter of 0.6–4.8 nm. 
However, the stomatal pathway is a solid-state path-
way that permits the hydrophilic and suspended mol-
ecules to be absorbed through diffusion (Uzu et  al. 
2010; Khan, et al. 2022a, b). Hu et al. 2020a, b, recently 
demonstrated, using confocal fluorescence microscopy 
with high spatial and temporal resolution, that carbon 
dots smaller than 2  nm could penetrate cotton leaves 

through the cuticular pathway. However, plants can 
only absorb a certain amount of nanoparticles through 
the epidermis because of the tiny pore channels in the 
cuticle.The absorption behaviour of nanoparticles in 
plant leaves can be influenced by their characteristics, 
including size, chemical makeup, surface charge, and 
surface modification. For example, Zhu et  al. 2020, 
applied 30  nm ZnO nanoparticles labelled with fluo-
rescein isothiocyanate (FITC) to wheat leaves. Using 
confocal microscopy, they discovered that zinc oxide 
nanoparticles mostly entered wheat leaves through the 
stomata pathway and accumulated in the chloroplasts. 
Additionally, they looked into how stomatal open-
ing and closing affected ZnO NP absorption. Avelian 
et  al. 2019, applied coating-modified gold nanopar-
ticles with varying diameters (3, 10, 50  nm) to wheat 
leaves. They discovered that wheat (Triticum aesti-
vum cv. cumberland) leaves could absorb the coated 
gold nanoparticles of all sizes. Similar to this, AgNPs 
accumulation was seen in the cotyledons of Arabidop-
sis seedlings (Geisler-Lee et al. 2014; Larue et al. 2014; 
Avellan et al. 2021; Rani, et al. 2023; Guo et al. 2023). In 
another study, Rapeseed, maize, and lettuce were found 
to accumulate AuNPs, TiO2NPs, CeO2NPs, and PbNPs 

Fig. 1 The small NPs enter plant roots through root epidermal cells, capillary forces, or osmotic pressure. The semipermeable root cell wall’s 
epidermal cells contain small pores that limit the movement of large NPs. Some NPs caused the epidermal cell wall to develop new pores, 
which aided in its entrance. NPs are apoplastically transported through extracellular spaces after passing through cell walls, eventually arriving 
at the central vascular cylinder and enabling the xylem to ascend unidirectionally. However, in order for NPs to enter the central vascular cylinder, 
they must symplastically cross the Casparian strip barrier. This is accomplished by endocytosis, pore formation, and transport, which bind 
to the carrier proteins of the endodermal cell membrane
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aggregates in a manner similar to that described for 
foliar exposure (Larue et al. 2012; Yasmin et al. 2021).

Plant response to nanoparticles under temperature 
stress
The interaction between plants and nanoparticles 
in the context of temperature stress is a complex and 
emerging field of research. Nanoparticles, due to their 
unique physicochemical properties, can influence plant 
responses under temperature stress conditions. Tem-
perature stress, whether in the form of heat or cold, 
can have profound effects on plant growth, develop-
ment, and overall performance. Studies suggest that 
nanoparticles, when introduced to plants under tem-
perature stress, may elicit both positive and negative 
responses. On the positive side, certain nanoparticles 
have been found to enhance the plant’s ability to cope 
with temperature extremes by acting as stress mitiga-
tors. These nanoparticles may facilitate improved water 
and nutrient uptake, enhance photosynthetic efficiency, 

and bolster antioxidant defenses, thereby aiding the 
plant in adapting to temperature-induced challenges. 
Conversely, some nanoparticles may exacerbate the 
negative impacts of temperature stress on plants. They 
might interfere with cellular processes, disrupt mem-
brane integrity, or induce oxidative stress, leading to 
impaired growth and reduced resilience to temperature 
extremes.

Understanding the intricate interplay between nan-
oparticles and plant responses under temperature 
stress is crucial for developing sustainable agricultural 
practices and optimizing nanoparticle applications in 
various environmental conditions. Further research is 
needed to elucidate the underlying mechanisms and 
identify nanoparticle characteristics that can be tai-
lored for positive interactions with plants facing tem-
perature stress, contributing to the development of 
resilient and adaptive crop varieties. Few modifica-
tions that are influenced by nanoparticles are explained 
below:

Fig. 2 Plants under temperature stress respond differently to nanoparticles applied to them; these responses assist the plant in overcoming 
the damage caused by high and low temperatures, as well as in acclimating to the temperature stress condition. Plants exhibit a variety 
of modifications, including: 1. Physiological modifications, which include an increase in the rate of photosynthesis, respiration, and transpiration; 2. 
Morphological changes that include an increase in the number of roots or leaves as well as an increase in their dry weight. 3. Anatomical changes 
such as changes in the ultrastructure of mitochondria and chloroplasts 4. Molecular modifications, such as heat tolerance gene expression; and 5.
Biochemical modifications, such as antioxidant responses and phytohormone synthesis
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Physiological modifications under the influence 
of nanoparticles
Heat stress has a negative impact on a wide range 
of physiological processes, including photosynthe-
sis, respiration, transpiration, osmotic regulation and 
reproductive capacity. One of the most heat sensitive 
physiological processes in plants is photosynthesis. It 
has been reported that the thylakoid membrane is dam-
aged during heat stress, and important photosynthetic 
enzymes like 1, 5-bisphosphate carboxylase and Rubisco 
are inhibited. Given that the PSII complex is the most 
heat-intolerant, photosystem II (PSII) activity is signifi-
cantly decreased or even completely stopped under HS 
(Song et al. 2014; Zhao et al. 2021a, b). Various nanopar-
ticles have been reported to affect plant physiology under 
temperature stress.

Qi et al (2013) had presented a detailed account on use 
of Nano-TiO2 in improving photosynthesis in tomato 
leaves under heat stress. The application of nano-TiO2 
increased the net photosynthetic rate, conductance to 
 H2O, and transpiration rate of tomato leaves. Addi-
tionally, it significantly reduced the relative electron 
transport in leaves and the minimum chlorophyll fluores-
cence. Under moderate heat stress, Nano-TiO2 increased 
the energy dissipation of the regulated photosystem II 
(PS II) and decreased the energy dissipation of the non-
regulated PS II.

One of the most widely explored nanomaterials is 
Nano-Selenium; the effect of it has been studied both 
under heat and cold stress. El-Saadony et al. (2021) have 
reported that under high temperature, the wheat treated 
with Bio-SeNPs (100  g/mL) had a 12–32% increase in 
total carotenoids and chlorophyll compared to con-
trol. Additionally, the gas exchange parameters tran-
spiration (Tr), the stomata’s conductance (gs) and net 
photosynthesis (Pn) have improved remarkably. Accord-
ing to a recently published research study, green syn-
thesis of SeNPs was achieved using a Lactobacillus casei 
bacterial strain with dimensions ranging from 50 to 
100  nm. They found that biogenic SeNPs improve the 
growth, physiological, and biochemical profiles of two 
sensitive chrysanthemum cultivars (sensual and Franco-
fone) when subjected to heat stress (up to 41.6 °C). Addi-
tionally, the nano-Se-treated cut chrysanthemum flowers 
exposed to heat stress demonstrated the positive effects 
of nan-Se on flower quality and economic value (Seliem 
et al. 2020). Another study found that SeNPs reduce the 
negative effects of heat stress in grain sorghum. They 
discovered that foliar applications of 10  mg/L SeNPs 
to sorghum during the booting stage under heat stress 
improved the anti-oxidative defense system by improving 
the antioxidant enzyme action potential. Besides, SeNPs 
reduce high-temperature stress by increasing pollen 

germination, seed set percentage, seed yield, photosyn-
thetic rate, and decreasing oxidative stress (Djanaguira-
man et al. 2018a, b).

In one comparative study, NPs such as silicon dioxide 
(nSiO2; 5–15  nm), zinc oxide (nZnO; < 100  nm), sele-
nium (nSe; 100 mesh), graphene (graphene nanoribbons 
[GNRs] alkyl functionalized; 2–15 μm × 40–250 nm) were 
applied as foliar sprays on sugarcane leaves to understand 
the amelioration effect of NPs against negative impact of 
chilling stress on photosynthesis and photo protection. 
By maintaining the maximum photochemical efficiency 
of PSII (Fv/Fm), maximum photo-oxidizable PSI (Pm), 
and photosynthetic gas exchange, NPs treatments less-
ened the negative effects of chilling. Additionally, seed-
lings treated with NPs contained more light-harvesting 
pigments (chlorophylls and carotenoids). The nonpho-
tochemical quenching (NPQ) of PSII was improved in 
seedlings treated with NPs due to higher carotenoid 
accumulation in the leaves. The nSiO2 had the greatest 
amelioration effects of the NPs (Elsheery et al. 2020).

In mung bean, Kareem et  al. (2022a) discovered that 
temperature increases above 28–30  °C, especially dur-
ing the flowering stage, can disturb the plant’s potential 
performance. The heat-stressed crops received a foliar 
spray of ZnO nanoparticles at various concentrations 
(0, 15, 30, 45, and 60 mg L-1). The use of nano-ZnO NPs 
at high temperatures increased chlorophyll activity, gas 
exchange parameters, and enzymatic balance, resulting 
in an increase in pod number, size, and total grain yield, 
according to the researchers. Treatments with exogenous 
AgNPs have also demonstrated to increase plants’ tol-
erance to cold temperatures. For instance, green beans 
exhibited quick and uniform germination in laboratory 
and field settings when exposed to low concentrations 
of AgNPs (0.25, 1.25 mg dm-3) under high temperature 
stress, which was evidently beneficial as evidenced by an 
increase in plant height, fresh and dry weight, and photo-
synthesis (Prazak et al. 2020).

Morphological modifications under the influence 
of nanoparticles
The morphological signs of heat stress include scorching 
and sunburns of leaves, twigs, branches, and stems, shoot 
and root growth inhibition,  leaf senescence and abscis-
sion,  fruit discoloration and damage (Rodríguez et  al. 
2005). NPs are effectively used as a nutrient source due to 
increased biomass production brought on by the ampli-
fication of metabolic, photocatalytic, and light energy 
conversion processes.  TheTiO2NP treatment, mung 
bean seedlings showed a noticeable increase in their 
shoot, root, and root nodule lengths as well as their total 
soluble protein and chlorophyll contents in the leaves. 
(Raliya et al. 2015). Under heat stress, the application of 
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biologically synthesized Ag-NPs at concentrations rang-
ing from 25 to 75 mg/L resulted in a significant increase 
in plant fresh and dry weight, root and shoot length, leaf 
area, leaf number, leaf fresh weight, and leaf dry weight. 
At 100 mg/L, however, all of these characteristics showed 
a significant decrease (Iqbal et al. 2019).

Anatomical modifications under the influence 
of nanoparticles
Abiotic stress causes various anatomical changes in 
plants. The type of abiotic stress affects the anatomical 
reactions. Under heat stress, cells shrink, stomata close, 
and transcription rates slow down, but stomatal and 
trichomatous densities rise and larger xylem vessels are 
seen in the roots and shoots (Bañon et al. 2004). Nano-
particle application aids in the plant’s anatomical adapta-
tions, which helps the plant survive in stressful situations. 
In order to prevent heat-induced damage and maintain 
better plant growth, ZnO NPs were applied to alfalfa 
seedlings before they were put under heat stress. Appli-
cation of 90 mg/L of ZnO nanoparticles before the onset 
of heat stress was more successful at reversing the ultra 
structural changes to chloroplast, mitochondria, and 
cell wall caused by the high temperature (Kareem et  al. 
2022b). Anatomical observations in heat stressed P.ostii 
plants show that the Multiwalled carbon nano tubes 
(MWCNTs) 200 mg/L treatment significantly slowed sto-
matal closure, and the stomata remained partially open, 
whereas the stomata remained close in control plants. 
Furthermore, the treatment significantly reduced meso-
phyll cell and chloroplast damage (Zhao et al. 2021a, b).

Responses at the molecular levels
Crop productivity is directly impacted by the regula-
tion of plant stress response, which is mediated by gene 
expression and consequently affects the production of 
enzymes and proteins. Numerous proteins, transcrip-
tion factors, and genes control how well an organism can 
withstand temperature stress. The stimulation of expres-
sion, whether it is up regulation or down regulation, has 
a direct impact on plant survival (Khalid et  al. 2022). 
According to reports, treating plants with NPs when they 
are under temperature stress reduces the stress by trig-
gering one or more molecular reactions.

The effects of silicon dioxide nanoparticles (SiNPs) and 
potassium silicate  (K2SiO3) at concentrations of 1.66 mM 
and1.5  mM respectively on wheat (Triticum aestivum 
L.) seedlings under heat stress (45  °C, 4  h) were evalu-
ated in the study by Younis et al.(2020).The results of the 
reverse transcription polymerase chain reaction (RT-
PCR) revealed that Si treatment, but not SiNP treatment, 
stimulated the overexpression of the genes for the aqua-
porins TaPIP1 (Triticum aestivum plasma membrane 

intrinsic protein) and  TaNIP2 (Triticum aestivum nodulin 
26-like intrinsic protein) in Triticum aestivum in paral-
lel (Younis et al. 2020). In one study, Arabidopsis thaliana 
seedlings were cultured in medium containing zinc oxide 
nanoparticles (ZnO-NPs) and then subjected to heat 
stress at 37 °C in order to study the molecular impact of 
ZnO nanoparticles during heat stress. The study involved 
TGS (transcriptional gene silencing) in aerial leafy tis-
sues. In Arabidopsis thaliana seedlings grown under ZnO 
NPs and subjected to heat stress (37  °C), the alleviation 
of TGS-GUS (-glucuronidase) genes was significantly 
improved (Wu and Wang 2020).

Differential expression of the genes involved in cellular 
defense, chromatin modification, cell signaling, and tran-
scriptional regulation was observed when Cicer arieti-
num L. (Chickpea) was treated with  TiO2NPs under cold 
stress (Amini et  al. 2017). The most significant of these 
was the up-regulation of the genes encoding for the large 
and small subunits of RUBISCO, Chlorophyll a/b binding 
proteins, and Phosphoenolpyruvate Carboxylase (PEPC), 
which in turn caused an increase in photosynthesis, 
altered energy metabolism, and a decrease in H2O2 con-
centration (Hasanpour et al. 2015).Another study showed 
how ZnO nanoparticles affected rice’s susceptibility 
to cold stress. ZnO NPs applied topically induced the 
expression of genes related to the CAT, SOD, and POD 
antioxidative system and transcription factors involved 
in the cooling response, basic leucine zipper, N-terminal 
Additionally, a reduction in  H2O2, MDA, and proline lev-
els as well as an increase in the activity of the main anti-
oxidant enzymes was observed (Song et al. 2021).

Biochemical modifications under the influence 
of nanoparticles
Nanoparticles (NPs) positively influence various mor-
phological, physiological, and biochemical processes 
that adversely affect crop productivity and plant devel-
opment under different abiotic stresses. Cold or freeze 
stress causes ice crystal damage, creates disorder in 
plant metabolism, and increases the production of reac-
tive oxygen species (ROS), thereby resulting in oxidative 
stress in plants. On the other hand, heat stress reduces 
photosynthetic and transpiration efficiencies, negatively 
regulates root development, reduces water utilisation effi-
ciency, and decreases crop productivity. In order to avoid 
excess heat or cold stress, plants have to evolve different 
strategies and complex regulatory mechanisms to survive 
harsh conditions. Besides improving plant growth, NPs 
also safeguard plants from various types of stress. The 
NPs can alter the protein structures by developing bonds 
between heavy metal and sulfahydryl groups, thus, alter-
ing the enzymatic activity and metabolic processes like 
DNA damage and lipid peroxidation (Djanaguiraman 
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et  al. 2018a, b; Al-Khayri et  al. 2023; Hasanuzzaman 
et al. 2013; El-Saadony et  al. 2022). Recent research has 
revealed that the NP seems to have a direct impact on the 
biochemical modifications of plants by modulating the 
antioxidant response and regulating phytohormone sig-
nalling under abiotic stress conditions.

Modulation of antioxidant response
Most of the enzymes are sensitive to various degrees of 
temperature, thus affecting different metabolic pathways. 
Therefore, there might be an accumulation of unwanted 
and harmful ROS like superoxide anion, hydrogen perox-
ide, hydroxyl radical, singlet oxygen, and lipid peroxida-
tion free radicals. ROS formation severely damages lipid 
membranes and other molecules like nucleic acids and 
proteins, causing the death of cells in plants. In response 
to heat stress, β–oxidation of fatty acids, galatolipids, and 
phospholipids releases aldehyde especially malondialde-
hyde (MDA) and causes degradation of plant cell mem-
branes (Hasaan et  al. 2018). As a result, NPs stimulates 
different ROS scavenging systems, including superoxide 
dismutase (SOD), peroxidase (POD), catalase (CAT), 
ascorbate peroxidase (APX), glutathione peroxidase 
(GPx), glutathione reductase, and guaiacol peroxidase, as 
well as non-enzymatic pathways (flavonoids, compounds, 
proline, and phenolic) (Djanaguiraman et  al. 2018a, b).
Several studies have reported that plants produce more 
antioxidant molecules when exposed to NPs (El-Saadony 
et al. 2022). NPs are absorbed by plants and form a metal 
component or cofactor of enzymes, making it an essen-
tial micronutrient for plants. NPs stimulate nanoen-
zymes, which restrict the production of ROS under stress 
conditions. NPs at an appropriate concentration alter the 
antioxidant enzyme activity to improve its performance 
against heat stress. NPs provide sustenance to plants and 
mitigate stress-induced damage by activating some enzy-
matic antioxidant mechanisms, such as the detoxification 
pathway.

Zinc (Zn) is a co-factor in SOD and performs the scav-
enging of superoxide radicals, thereby playing an essen-
tial role in stabilising cell membranes against oxidative 
stress. Hassan et al. reported Zn as a co-factor for CAT, a 
hydrogen peroxide scavenging enzyme protecting mem-
brane lipids and proteins from peroxidation. Thus, Zn 
affects the enzyme stability of the ROS scavenging sys-
tem, thereby protecting the cell membrane from perme-
ability alterations (Hassan et al. 2018).

UV-B exerts several impacts on the biochemical and 
molecular processes of plants, resulting in a high accu-
mulation of ROS. Nitric oxide (NO) gets triggered in 
response to ROS-mediated oxidative damage but is not 
sufficient to induce antioxidants like SOD and APX. 
However, the addition of NPs like Si greatly triggers NO, 

so ultimately there is an enhanced level of antioxidants 
counterbalancing the level of ROS. Thus, UV-B-mediated 
stress can be mitigated by pre-addition of Si NPs, lead-
ing to up-regulation of antioxidants due to enhancement 
of NO levels in wheat plants. Also, Si NPs lowered MDA 
and electrolyte leakage, suggesting their role in mem-
brane lipid peroxidation (Tripathi et al. 2017a, b). Ascor-
bate, a non-enzymatic antioxidant, actively participates 
in managing ROS levels in plants, especially by maintain-
ing hydrogen peroxide inside the cell. NPs addition sig-
nificantly overproduces ascorbate and proline, reducing 
the lethal impact of ROS under different stress condi-
tions. Thakur et al. reported that pretreatment with ZnO 
and  TiO2 NPs led to increased antioxidant potential and 
higher production of non-enzymatic antioxidants like fla-
vonols and phenols in wheat plants. Therefore, improved 
heat stress resistance can be achieved by pre-treatment of 
ZnO NP at a lower concentration (1.5 ppm) and  TiO2NPs 
at a 10 ppm concentration increases SOD and GPX activ-
ity thereby lowering MDA and  H2O2 levels(Thakur et al. 
2021).

In addition to oxidative damage, ROS can also serve 
in MAPK signal transduction for a range of stresses. 
ROS activated by Cu induces SIMK and SAMK path-
way activation (Yuan et al. 2013). Se-NPs stimulated the 
antioxidant defense system in sorghum under high tem-
perature stress, decreasing the enzyme activity of SOD, 
CAT, POX, and GPX. Also, Se-NPs improved pollen 
germination and maintained the lipid bilayer and fluid-
ity by facilitating higher levels of unsaturated phopspho-
lipids (Djanaguiraman et al. 2018a, b). Different doses of 
Ag-NPs and Cu-NPs (500, 750, and 1000  ppm) induces 
activation of stress enzymes CAT, POD and phenylpro-
panoid pathway increasing total phenolic content in pea-
nut leaves to reduces ROS ( Santos-Espinoza et al. 2020).

Regulation of biosynthesis of phytohormones
Phytohormones, being the versatile regulators of plant 
growth and development, present an unexplored field in 
NPs-induced abiotic stress. The levels of phytohormones 
reflect the abiotic stress level in plants. The plant’s hor-
monal balance and metabolic pathways get altered in 
response to abiotic stress. NPs may regulate phytohor-
mone biosynthesis positively or negatively, depending on 
their levels (Fig.  3). Plant antioxidant systems are com-
posed of salicylic acid, jasmonic acid, methyl jasmonate, 
ABA, and other plant hormones (Santos-Espinoza et al. 
2020; Yuan et  al. 2013). Although there are few reports 
on the alteration of phytohormones by nanoparticles 
under temperature stress, there are high chances the 
future research holds potential to reveal many beneficial 
relationships in this direction. In general, nanoparticles 
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are reported to cause changes in level of phytohormones 
expressed in plants.

For instance, plants sense nanoparticles (NPs) under 
severe stressed conditions and leads to elevation of stress 
hormone abscisic acid (ABA) and salicylic acid (SA); NPs 
gets accumulated in the apices and thus down-regulates 
growth due to decreased levels of auxin and cytokinins 
(CKs); Gibbrellic acid (GA) reduces NPs accumulation by 
improving antioxidant response (Fig. 4).

NPs influence a wide range of auxin-regulated phe-
notypes, such as increased root hairs, inhibition of root 
elongation, and increased formation of lateral roots. It 
directly affects plant responses to stress through changes 
in auxin homeostasis, transport, and stability. Trypto-
phan, being the precursor for the Indole-3-acetic acid 
(IAA) synthesis pathway, regulates IAA levels required in 
many root functions. IAA is produced by the shoots and 
delivered to the root tips, where the redistribution occurs 
in an inverted fountain effect that allows the growth 
regulator to enter and exit the cells. IAA redistribution 
results in the accumulation of IAA in root tip cells and 
correlates with primary root elongation upon exposure 
of Arabidopsis roots to Cu ions (Yuan et  al. 2013). Cu-
NPs dissolution modifies IAA distribution in the rhizos-
phere, causing root shortening and nitric oxide signalling 
to promote the proliferation of root hairs (Adams et  al. 

2017). The auxin content was maintained in leaves dur-
ing increased stress, and IAA levels were relatively high 
in the roots (Vankova et al. 2017; Santos-Espinoza et al. 
2020).

Cytokinin, an essential phytohormone for plant growth 
and development, has also been conceded to play a signif-
icant role during plant acclimation to stress conditions. 
Stress tolerance in plants may be positively or negatively 
affected by cytokinins. It has been reported that cyto-
kinins are most abundantly found in tissues exposed to 
various stresses (drought, heat). The cytokinin levels in 
plants are maintained by conversion between free bases, 
nucleosides, and nucleotides and by their inactivation, 
degradation, translocation, and de-novo synthesis. There 
was a significant increase in total cytokinins in the leaves 
of pepper plants treated with Ag-NPs, which affected 
their development by decreasing both plant height and 
biomass. It was suggested that the inhibition of plant 
growth may not have been caused directly by the phyto-
toxicity of Ag-NPs but rather by the interactions between 
plant transport pathways and Ag-NPs (Vinkovi et  al. 
2017). The cytokinin content in the roots and apices of 
Arabidopsis was increasing at higher ZnO-NPs levels due 
to the accumulation of cis-zeatin (Vankova et al. 2017).

Gibberellic acid (GA), an important signaling phyto-
hormone, enhances plant development and physiological 

Fig. 3 Effect of NPs on regulation of biosynthesis of phytohormones. Plants sense nanoparticles (NPs) under severe stressed conditions and leads 
to elevation of stress hormone abscisic acid (ABA) and salicylic acid (SA); NPs gets accumulated in the apices and thus down-regulates growth due 
to decreased levels of auxin and cytokinins (CKs); Gibbrellic acid (GA) reduces NPs accumulation by improving antioxidant response
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processes like seed germination, cell division and matu-
rity, root formation, and flowering. GA also enhances the 
tolerance to environmental stresses like chilling, drought, 
and salt. GA ultimately sustained the growth, nutrient 
contents, and yield (Iftikhar et al. 2019).

Abscisic acid (ABA) is a well-known stress phytohor-
mone. ABA levels in plants indicate stress levels under a 
variety of abiotic stress conditions. ABA interacts with 
the cis- and trans-acting regulatory elements of respon-
sive promoters of the gene involved in stress response. 
A number of transcription factors are involved in the 
regulation of ABA expression. ABA is stable at high tem-
peratures and thus provides protection against cell dehy-
dration. In response to NPs, ABA increases freezing, 
chilling, drought, and salt tolerance in numerous plant 
species (Vishwakarma et al. 2017) (Table 1).

Salicylic acid (SA) is an endogenous hormone present 
in plants. It regulates the biochemical and physiologi-
cal processes when plants are exposed to extreme stress 
conditions. The cold tolerance of maize seedlings was 
improved by the application of exogenous salicylic acid. 
SA elevates antioxidant enzymes such as POD and SOD 
to eliminate ROS in plant cells. A large number of ROS 
causes the cell membrane to release all extracellular con-
tents, ultimately causing cell death (Yan et al. 2023). The 

SA levels were diminished in the apices at low ZnO NPs 
concentrations, whereas the SA profiles were delayed in 
the roots of the Arabidopsis plant (Vankova et al. 2017) 
(Table 2).

Synergetic effect of nanoparticles and PGPR
Plant show adaptation against different stresses. There 
are different varieties of plant available to cope with 
stresses such as drought-tolerant varieties or geneti-
cally engineered crops. These varieties are not econom-
ically feasible as well as have ethical and environmental 
concerns. To overcome this problem nanoparticles have 
shown promise (Azmat et  al. 2022).Recent studies by 
Rukhsar-Ul-Haq et  al. (2023) showed application of 
ZnONPs increased fresh and dry weight of shoot and 
root, chlorophyll “a” and chlorophyll “b” and triggered 
the antioxidant defense system in wheat Plant. Multi-
ple studies have proved efficiency of PGPR to alleviate 
different stress in plants (Rashid et al. 2022). Combina-
tion of PGPR and nanoparticles have given added ben-
efits and increased crop yields (Muhmmad et al. 2022). 
Azmal et  al. (2022) discovered that plant growth-pro-
moting rhizobacteria (PGPR) and green synthesised 
zinc oxide nanoparticles (ZnO-NPs) using fruit extract 
of Papaya protect wheat against heat and drought stress 

Fig. 4 When nanoparticles are applied to plants under temperature or heat stress, 1. Nano-polymers on temperature elevation release the heat 
stress-regulating agents inside of the plants 2. Plants exhibit modifications like: Enhanced antioxidant enzyme activity, enhanced osmolyte content, 
increased chlorophyll content, increased seeds per pod and pods per plant to overcome high temperature stress
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at a concentration of 10 ppm. ZnO-NPs combined with 
Pseudomonas sp. Produces more proline, antioxidant 
enzymes and abscisic acid, which protect the plants 
from all stress groups. Redondo-Gomez et  al. (2022) 
investigated the use of isolated PGPR consortia from 
halophytes to improve strawberry growth and flower-
ing performance under saline, elevated  CO2 and tem-
perature conditions and discovered that the presence of 

salt had a positive effect on plant growth in high  CO2 
and elevated temperature conditions. Although, there 
are few reports on temperature stress because this is 
a relatively new area of research, there are numerous 
studies demonstrating the synergistic effect of PGPR 
and nanoparticles in overcoming other abiotic stresses. 
Different studies have been reported on this topic are 
summarized in the Table 3.

Table 2 Role of nanoparticles in Regulation of Biosynthesis of Phytohormones in plants under stress

Plants Nanoparticles Phytohormone Major effect References

Wheat CuO Auxin/IAA Root hair proliferation and shortening of the zones of division 
and elongation

(Adams et al. 2017)

Arabidopsis CuO IAA Accumulation of IAA in root tip cells and primary root elonga-
tion

(Yuan et al. 2013)

Arabidopsis ZnO IAA Inhibition of IAA in the apices where as high doses in the roots (Vankova et al. 2017)

Arachis hypogaea L Ag/Cu IAA Decrease in IAA levels with different doses of Ag and Cu (Santos-Espinoza et al. 2020)

Arabidopsis ZnO Cytokinins Accumulation of cis-zeatin with higher ZnO levels (Vankova et al. 2017)

Pepper plants AgNP Cytokinins Affected the development by decreasing both plant height 
and biomass

(Vinković et al. 2017)

Wheat ZnO GA Increased GA content reduced Zn accumulation and decrease 
in toxicity caused due to ROS

(Iftikhar et al. 2019)

Red pepper AgNP Auxin/ABA Decreased levels of auxin/ABA (El-Saadony et al. 2022)

Arabidopsis ZnO ABA Increased ABA levels in apices and leaves (Vankova et al. 2017)

Arabidopsis AgNP ABA/Auxin Induces genes responsible for ABA and auxin signalling (Syu et al. 2014)

Arabidopsis AgNP Ethylene Inhibit ethylene perception (Syu et al. 2014)

Arabidopsis ZnO Salicylic acid Diminished levels in apices with low Zn-NP (Vankova et al. 2017)

Table 3 Synergetic effect of nanoparticles and PGPR in stress alleviation

Sr.no Nanoparticle PGPR Plant Effect on Plant Stress alleviated Reference

1 Zn Pseudomonas sp. Wheat Production of high proline, antioxi-
dant enzymes and abscisic acid

Heat and Drought Azmat et al. 2022

2 Mo Bacillus sp. strain ZH16 Wheat Promote indole-3-acetic acid 
synthesis, phosphate solubiliza-
tion and ACC deaminase activity

arsenic (As) contamination Ahmed et al. 2022

3 ZnO PGPR mixed Biofertilizer Maize Enhanced fresh and dry biomass, 
relative water content, protein con-
tent, soluble sugars, proline content, 
enzymatic antioxidant defense 
mechanisms including activities 
of catalase (CAT), peroxidase (POD), 
ascorbate peroxidase (APX), super-
oxide dismutase (SOD), and malon-
dialdehyde (MDA) content

Arsenic resistance Khan et al. 2022a, b

4 ZnO Biofertilizer Safflower Increased the plant productiv-
ity, percent water content, 
and osmolyte levels. improved 
the activities of antioxidant 
enzymes

Salinity Asmin et al. 2021

5 ZnO Bacillus subtilis, Lacto-
bacillus casei, Bacillus 
pumilu

Tomato Changed in the expression of SOD 
and GPx encoding genes

Salinity Hosseinpour et al. 2020

5 ZnO Azospirillum brasilense Wheat Triggered nitrogen metabolism, 
chlorophyll synthesis and mem-
brane integrity

Drought Muhammad et al. 2022
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Temperature smart engineered nanomaterials 
to cope up with temperature stress
High and varying temperature leads to morphological, 
physiological and biochemical changes in plants, which 
affect plant growth and development and decrease yield. 
The adverse effects of heat stress can be reduced by devel-
oping crop plants with improved thermo-tolerance using 
various genetic approaches. Recently, the use of nanopar-
ticles to improve plant growth and yield after heat stress 
has been reported. The small size of NPs allows its bet-
ter penetration into targeted tissues. They can easily pass 
through the cellular membrane and associate themselves 
with biomolecules and cellular structures. The high sur-
face area of NPs helps in carrying higher concentration of 
compounds and contributes towards their slow as well as 
steady release at the site of action. Nanoparticles can be 
engineered to give novel properties which can be useful 
in drug delivery. Biocompatible temperature-responsive 
polymeric materials can be added to make temperature 
smart nanoparticles which can help in delivery of drug by 
small variations in temperatures (Karimi et al. 2016). Few 
researchers have synthesized and applied temperature 
smart nanoparticle to make heat resistant plants.

Zhang et al. 2023 synthesized a temperature-responsive 
poly[2-(2-bromoisobutyryloxy)-ethyl methacrylate-graft-
poly(acrylic acid)-block-poly(N-isopropyl acrylamide)] 
P[BiBEM-g-(PAA-b-PNIPAm)] bottlebrush polymer that 
can inoculate plants to confer resistance to heat stress for 
extended periods of time by releasing the heat stress-reg-
ulating agents inside of the plants in response to elevated 
temperatures. Zhang et  al. 2020 developed poly(acrylic 
acid)-block-poly(N-isopropyl acrylamide) (PAA-b-PNI-
PAm) star polymers with varying block ratios for tem-
perature programmed release of a model antimicrobial 
agent (Crystal Violet) under relevant pH and heat stress 
in plants. Djanaguiraman et  al. 2018a, b proved role of 
selenium nanoparticles in grain sorghum. They showed 
that that Se-NPs can move from root to shoot of sor-
ghum plants. Foliar spray of Se-NPs during the booting 
stage of sorghum grown under HT stimulated the antiox-
idant defense system by enhancing antioxidant enzymes 
activity. Se-NPs facilitated higher levels of unsaturated 
phospholipids. Se-NPs under heat stress improved the 
pollen germination percentage, leading to a significantly 
increased seed yield.

Kareem et  al 2022a, b showed exogenous foliar appli-
cation of nano-ZnO significantly up-streamed the pro-
duction of antioxidants and osmolytes to attenuate the 
shocks of heat stress in mung bean. Foliar-applied nano-
ZnO raised not only the chlorophyll contents and gas 
exchange attributes, but also the seeds per pod (SPP) and 
pods per plant (PPP), which results in the better grain 
yield under heat stress. ZnO nanoparticles prevented the 

heat stress-mediated membrane damage, lipid peroxida-
tion and oxidative stress by stimulating antioxidant sys-
tems and enhancing osmolyte contents in alfalfa plants 
(Kareem et al 2022a, b). Magnetite and Zinc Oxide nan-
oparticles have shown to alleviate heat Stress in Wheat 
Plants (Hasan et al. 2018; Kausar et al. 2023).

Phytotoxic effect of nanoparticles
Many studies have been performed to demonstrate 
the effects of nanoparticles (NPs) on terrestrial plants, 
including agricultural plants, annual herbs, grasses, and 
flowering plants. NPs have shown both positive and 
negative effects on plant physiology and morphology. 
Phytotoxicity due to nanoparticles refers to the harm-
ful effects nanoparticles on plants. Nanoparticles, have 
shown varying degrees of phytotoxic effects on plants. 
They can affect seed germination, cellular metabolism, 
root and shoot growth, biomass production, and genetic 
material integrity (Parthasarathi 2011; Yadav et al. 2014; 
Choudhury et al. 2016) Various NPs like silver, titanium 
dioxide, and zinc oxide have been found to inhibit root 
elongation significantly (Bajaj et al. 2023; Konotop et al. 
2014). Additionally, nanoparticles can induce oxidative 
stress, alter cellular structures, and affect gene expression 
in plants, leading to phytotoxicity (Wu et al. 2012; Mada-
nayake et al. 2021; Gowtham et al. 2024).

The size, shape, surface coating, and chemical composi-
tion of NPs play crucial roles in determining their level of 
toxicity. Phytotoxicity may also depend on environmen-
tal factors and the physical and chemical nature of the 
plant species (Ruttkay-Nedecky et  al. 2017). Addition-
ally, the toxicity of NPs is influenced by their concentra-
tion, with higher concentrations often resulting in more 
pronounced effects (Verma et  al. 2021). Some nanopar-
ticles remain adhered to the plant surface, while oth-
ers are transported inside the vascular system of plants. 
Phytotoxicity tests are typically carried out during seed 
germination and seedling growth stages, revealing a 
wide variation in the phytotoxicity caused by different 
NPs (Table 4). Essential metal nanoparticles such as Zn, 
Cu, Fe, Mn, and their oxides are frequently studied due 
to their importance as essential nutrients for plants and 
their relatively low toxicity across a wide concentration 
range.

Besides, having direct effect on plants, Nanopar-
ticles can prove toxic to plants in number of ways. 
For instance, NPs may have an impact on soil health 
and nutrient cycling through interactions with soil 
microorganisms. These interactions underscore the 
interdependence of aboveground and belowground 
ecosystem components by potentially having indirect 
effects on plant growth and health (Zhang et  al. 2015; 
Hussain et  al. 2023). Moreover, the functioning of 
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ecosystems, soil fertility, and plant communities may 
all be impacted over time by persistent exposure to 
NPs. Concerns regarding the health of humans and ani-
mals are raised by the possibility of NPs bioaccumulat-
ing and biomagnifying in the food chain (Karimi et al. 
2018; Uddin et al. 2020).

To reduce phytotoxicity caused by nanoparticles, 
various strategies have been explored. One approach 
involves utilizing designed nanomaterials through dif-
ferent application methods like solution, seed priming, 
and spraying, which enhances plant resilience to metal 
stress (Bajaj et  al. 2023). Green synthesis of nanopar-
ticles, such as silver nanoparticles (AgNPs) from Aloe 
vera leaf extract, has been shown to effectively miti-
gate phytotoxicity compared to chemically synthesized 
AgNPs, promoting germination and growth in plants 
(Anju et  al. 2022). Additionally, the use of biocompat-
ible and non-phytotoxic cellulose acetate nanoparticles 
has been proposed as a promising solution for agricul-
tural applications, as they do not induce phytotoxic, 
cytotoxic, or genotoxic effects, making them environ-
mentally friendly (Lima et al. 2022). Furthermore, silver 
nanoparticles (AgNPs) have demonstrated phytosta-
bilization properties, reducing toxic metal accumu-
lation in plants while enhancing antioxidant activity 
and promoting plant health (Adejumo et  al. 2023). By 
employing these strategies, it is possible to address and 
overcome phytotoxicity associated with nanoparticles 
in plants. Proactive mitigation strategies are required 
to ensure the safe use of emerging nanomaterials and 
applications in agriculture, while also minimising 
potential risks to the health of plants and the environ-
ment. Our understanding of nanoparticle-plant inter-
actions will grow as a result of the identification of 

knowledge gaps and the prioritising of future research 
directions, which will also inform risk assessment and 
management techniques.

Conclusion and future prospects
There are many ways in which nanotechnology in agri-
culture may have a fundamental impact on a variety of 
global predicaments, including addressing the impact of 
climate change and enhancing nutrient bioavailability in 
plants. The agricultural sector benefits from both target-
ing specific nanotechnology approaches and non-target-
ing specific nanotechnology approaches. It is through 
the interactions between plants and nanoparticles that 
real hope can be found for achieving agricultural sus-
tainability, specifically in terms of onsite pathogen detec-
tion, crop improvement, and agriculture efficiency. The 
findings pertaining to nutritional elements containing 
NPs (i.e., Fe, Cu, Se, and Co) have demonstrated sub-
stantial scientific evidence of their efficacy in improving 
the plant’s micronutrients, which has been reflected in 
improved growth parameters and notable improvements 
at the physiological level (i.e., chlorophyll and carot-
enoids, photosynthetic activity, metabolic pathways, and 
transpiration rate. Both inorganic and organic nanopar-
ticles have shown promise in treating temperature stress 
in plants. The use of inorganic nanoparticles, have been 
studied extensively; however, the use of organic nanopar-
ticles  have  not received as much attention. Despite the 
limited number of reports documenting the effectiveness 
of organic nanoparticles in alleviating temperature stress 
in plants, their unique properties and potential benefits 
warrant further investigation. In recent studies of nano-
particles, not only have different pathways and biomol-
ecule interactions been examined, but also its effect on 

Table 4 Phytotoxic effects of Nanoparticles

Nanoparticle Concentration Phytotoxicity effect References

AgNP 50 ppm Inhibit seed germination, inhibit seedling growth, affect mass and length of roots and shoots Budhani et al. 2019
Yan et al. 2019
Rastogi et al. 2019

ZnO 50 μg/ml Affect Plant growth, rigidity of roots, and root cell viability
Showed cytotoxic and genotoxic effects in the root meristems by affecting the cell membrane 
integrity, metabolic activity, reactive oxygen species accumulation, DNA damage, chromosome 
aberrations and cell cycle progression

Hossai et al. 2016
Sun et al. 2019

CuO 10 g/l Inhibit the growth by affecting the shoot and root elongations, maximal quantum yield of pho-
tosystem II, and transpiration rate

Rajput et al. 2018

MWCNTs 500 mg/l Differentially regulates the expression of genes important for maintaining cellular ROS homeo-
stasis

Yang et al. 2023

Fe2O3 100 mg/l Decreased root elongations Kumar et al. 2015

TiO2 100 mg/100 ml Reduction in  CO2 fixation, transpiration rate and stomatal conductance Teszlák et al 2018

CeO2 500 mg/l Destroy chloroplasts and vascular bundles Nhan et al 2015

La2O3  ≥ 10 mg/l Decreased shoot, root biomass and root length Liu et al. 2018
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different genes and the risks associated with their use in 
plants. Even though the beneficial effect of nanoparticles 
in abiotic stress tolerance is well established, the majority 
of these studies are still in the laboratory. The widespread 
use of nanoparticles has raised concerns about their 
possible negative environmental effects as well as the 
potential for nanoparticle buildup in edible plant parts. 
Consequently, specialized research is required to develop 
suitable evaluation methodologies to assess the effects 
of nanoparticles on abiotic ecosystem components. In 
order to commercialize nanotechnology from the lab to 
the agricultural fields, future research should focus on 
designing NPs that are reasonably priced, nontoxic, eco-
logically safe, and self-degradable.
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