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Abstract 

In an era marked by rapid global changes, the reinforcement and modernization of plant health surveillance systems 
have become imperative. Sixty‑five scientists present here a research agenda for an enhanced and modernized plant 
health surveillance to anticipate and mitigate disease and pest emergence. Our approach integrates a wide range 
of scientific fields (from life, social, physical and engineering sciences) and identifies the key knowledge gaps, focusing 
on anticipation, risk assessment, early detection, and multi‑actor collaboration. The research directions we propose are 
organized around four complementary thematic axes. The first axis is the anticipation of pest emergence, encompass‑
ing innovative forecasting, adaptive potential, and the effects of climatic and cropping system changes. The second 
axis addresses the use of versatile broad‑spectrum surveillance tools, including molecular or imaging diagnostics sup‑
ported by artificial intelligence, and monitoring generic matrices such as air and water. The third axis focuses on sur‑
veillance of known pests from new perspectives, i.e., using novel approaches to detect known species but also antici‑
pating and detecting, within a species, the populations or genotypes that pose a higher risk. The fourth axis 
advocates the management of plant health as a commons through the establishment of multi‑actor and cooperative 
surveillance systems for long‑term data‑driven alert systems and information dissemination. We stress the importance 
of integrating data and information from multiple sources through open science databases and metadata, along‑
side developing methods for interpolating and extrapolating incomplete data. Finally, we advocate an Integrated 
Health Surveillance approach in the One Health context, favoring tailored and versatile solutions to plant health 
problems and recognizing the interconnected risks to the health of plants, humans, animals and the environment, 
including food insecurity, pesticide residues, environmental pollution and alterations of ecosystem services.
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Introduction
Emerging and endemic pests or pathogens, here collec-
tively referred to as pests* (see Table  1 for definitions 
of terms marked by an asterisk), are an inseparable 
component of plant health —in addition to symbioses 
and abiotic factors, for example. As such, they are the 
target of plant health surveillance strategies worldwide. 

Rooted in a long history paved with successes and 
failures, plant health surveillance for emerging or 
re-emerging pests (simply called “emerging pests” 
hereafter) currently needs both reinforcement and 
modernization. This is the central topic of this article. 
The need to improve plant health surveillance systems 
stems from a series of factors. Firstly, there is mounting 

Keywords Biosecurity, Citizen science, Data integration, Data analysis, Decision‑making, Epidemiology, Outbreak, 
Pathogen, Reservoirs, Spread

Table 1 Basic notions in plant health surveillance

Definitions of key terms, main factors of pest emergence, and main objectives and actions for surveillance of emerging pests

Definitions A pest is defined as any species, strain or biotype of pathogenic agents, animals 
or parasitic plants injurious to plants or plant products (EU legislation, Regulation 
2016/2031)

Plant pest emergence is the appearance or increased prevalence of a pest (hence 
including re‑emergence) on cultivated or non‑cultivated plants

Global change encompasses climate change and various changes in trade, regulation, 
land use and agricultural practices

A commons designates both (i) a tangible or intangible matter (e.g., a resource, 
a product) put in common between actors, and (ii) the social infrastructure, arrangement 
and processes settled for using and maintaining the common matter (Euler 2018)

Factors underlying pest emergence Natural and human‑mediated dispersal (air, surface water, trade in its local and global 
dimensions, hitchhiking, etc.)

Genetic and ecological processes, and changes in the biotic environment (genetic 
variability of pests, pest adaptation, pathogen spillover, plant selection, reservoir hosts 
and environments, new plant species, biological community features, vectors, auxiliaries, 
competition, symbioses, etc.)

Changes in the abiotic and social environment (climate, agricultural practices, regulation, 
land use and habitat continuity/fragmentation, etc.)

Main objectives of surveillance of emerging pests Limiting the spread of emerging pests to reduce the cost of control and the risk 
of collapse of agricultural sectors

Reducing the need for widespread harsh control measures impacting human 
and animal health as well as environmental quality, and push toward pesticide‑free 
agriculture while meeting food demand

Contributing to a better understanding of the ecology of emerging pests in a global 
context, and assessing the risks and available responses, including monitoring options, 
alert and control

Improving information sharing to facilitate communication and collaboration 
between stakeholders, and effective decision‑making

Main conventional actions for surveillance of emerging pests Identification and categorization of pests that pose a risk of (re‑)emerging 
from elsewhere or due to environmental changes and have the potential to cause 
significant damage according to multiple criteria (yield, economy, environment, etc.)

Biosecurity measures (quarantine procedures, regulation of the movement of plant 
material, etc.) to reduce the risk of pest introduction and spread

Early detection and rapid response systems to promote outbreak detection before pests 
become widespread and to enable control measures to be taken promptly

Monitoring protocols of crops and surrounding environments grounded on visual 
inspections, genomic identification, etc

Collaboration and communication between stakeholders (farmers, agricultural 
organizations, government agencies, etc.) to improve information sharing and increase 
the effectiveness of pest surveillance efforts

Public awareness and education about the importance of plant health and the risks 
associated with pest emergence (including citizen science programs) to raise the level 
of concern and mobilize multiple sectors of the society
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awareness of the need for more timely and cost-effec-
tive response to pest emergence* due to the increasing 
impact of global change* on pests (Brooks et  al. 2022; 
Carvajal-Yepes et al. 2019; Chaloner et al. 2021; Garrett 
et al. 2022; Jeger et al. 2021; Morris et al. 2022; Ristaino 
et al. 2021; Silva et al. 2021; Trivellone et al. 2022). The 
rapid globalization of trade and climate change are 
introducing new dynamics in the spread of pests, which 
conventional surveillance systems are often unable to 
manage effectively. These systems may lack the agil-
ity to respond quickly to new threats that can emerge 
and spread across borders at unprecedented speed. For 
instance, there has been a significant increase in the 
number of emerging pest species, particularly insects, 
that had never been observed outside their home range 
and had never caused damage in their native areas 
(Schneider et  al. 2022; Seebens et  al. 2018). Therefore, 
grounding a surveillance system on quarantine lists, 
known invaders, or lists of species known as pests in 
other continents addresses only part of the problem, 
and research should explore the complementary, gen-
erally ignored, part. Secondly, for evident practical rea-
sons, plant health surveillance has traditionally been 
directed toward detecting plants with visible symptoms 
or macro-pests. However, there are limitations to this 
approach, including the difficulty of detecting incon-
spicuous or unstable symptoms and pests, surveilling 
unknown and distant reservoir plants or inaccessible 
plants, and overcoming prohibitive surveillance costs. 
Thirdly, advances in technology and data analysis offer 
new opportunities to improve the efficiency and accu-
racy of surveillance, which traditional methods may not 
fully incorporate.

Crop failures or forest declines, due to emerging pests 
or changes in pest virulence, intensify the pressure on 
food security, the economy and major ecosystem ser-
vices, which contributes to jeopardizing social stability 
and the well-being of human populations (Gullino et al. 
2022; Singh et  al. 2023). By helping to detect emerging 
pests at an early stage, surveillance can also be a means of 
reducing the need for harsh, area-wide control measures, 
which can have negative impacts on the environment 
and the sustainability of food systems (Cros et  al. 2021; 
Fuller et  al. 2020; Picard et  al. 2019). Specifically, early 
detection and action in targeted areas limits the need to 
destroy large numbers of host plants or to use pesticides, 
antibiotics or other antimicrobials on a large scale. This 
reduces selective pressure and horizontal gene transfer, 
thereby reducing the risk of resistance in plant, animal 
and human pests (REX_Consortium 2013). Therefore, 
plant health surveillance has the potential to make a sig-
nificant contribution to the goal of pesticide-free agricul-
ture and its associated beneficial effects on human and 

animal health and environmental quality (Jacquet et  al. 
2022). Table 1 summarizes the main objectives of surveil-
lance for emerging pests.

Many of the proposals for enhancing surveillance of 
plant health involve technologies that will intensify the 
creation and deployment of “information”. By information 
we refer to (i) signals and data obtained from a multitude 
of new sensors, diverse sources of open massive data, and 
possibly derived from artificial intelligence (Garrett et al. 
2022; Ristaino et al. 2021) and (ii) complementary knowl-
edge from all involved disciplines. This wealth of infor-
mation allows characterizing and anticipating potential 
health crises and acquiring new knowledge, which should 
contribute to decision-making to prevent or detect pest 
outbreaks early enough to control them more effectively. 
In turn, this ever-increasing wealth of information will 
render the decision-making process itself more complex, 
increasing the need for problem solving theory, deci-
sion theory, communication theory and systems thinking 
(Davila et al. 2021; Faure et al. 2023).

An obvious barrier to introducing upgraded surveil-
lance systems is the risk of exhausting the necessarily lim-
ited resources that can be devoted to monitoring itself, as 
well as to related decision-making processes and public 
awareness. Implementing enhanced surveillance systems 
will require a variety of approaches that need to be evalu-
ated for their efficiency (Jarrad et al. 2015), either alone 
or in combination. The design of multiple surveillance 
options and their evaluation will certainly be a matter 
for concerted research. As previously highlighted (Mor-
ris et al. 2022; Ristaino et al. 2021), such research will be 
inherently interdisciplinary to cover a wide range of sci-
entific fields (biology, ecology and genetics of pests and 
the phytobiome, geography, economics, social sciences, 
data science, mathematics, etc.), risk factors (networks 
that can disseminate pests such as trade, the troposphere 
or surface water flow, weather and climate patterns, land 
use and soil properties, etc.), and technologies (sensors, 
sequencing, text mining, machine learning, database 
management, etc.). The aim of this research is to do more 
than just fill knowledge gaps. It will establish interdisci-
plinary interfaces for the development of tools that can 
handle massive and heterogeneous data and knowledge. 
These tools will facilitate knowledge inference, modeling 
and pattern recognition. Access to data, methods and 
results will have to be open in order to support worldwide 
collaboration, and trust by enabling verification. In addi-
tion, the research will aim to develop multi-stakeholder 
approaches that synergistically bring together different 
societal sectors and scientific disciplines (Morris et  al. 
2022). Finally, the research also has to promote thinking 
outside the box by questioning the assumptions associ-
ated with standard approaches to monitoring emergence.
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To draw up a comprehensive research agenda dealing 
with the reinforcement and modernization of plant health 
surveillance for (re-)emerging pests, we convened 65 sci-
entists mostly from the French National Institute for Agri-
culture, Food and the Environment (INRAE) (https:// www. 
inrae. fr/ en), as well as from Cirad (https:// www. cirad. fr/ en) 
and Anses (https:// www. anses. fr/ en), covering a wide range 
of scientific fields. Our goal was to identify priority research 
questions, approaches and emerging tools addressing the 
challenge of conceiving an enhanced plant health surveil-
lance system. We deliberately looked beyond the social, 
economic, and political constraints of the present, thereby 
encouraging ourselves —and subsequently our readers—
to rethink existing surveillance practices and bypass feasi-
bility judgments. We have focused on the conceptual and 
technological advances in this area, and not on the detailed 
operational characteristics of the various approaches and 
tools (i.e., cost, spatial resolution, timeliness, accuracy, etc.). 
Indeed, many of the mentioned approaches/tools are still 
under development or in the early stages of application; 
thus, comprehensive data on cost-effectiveness or accu-
racy may not be available or would be largely speculative. 

By proceeding this way, we aimed to stimulate research 
interest in the concepts/approaches/tools mentioned in the 
manuscript, and to promote more in-depth exploration of 
their practical application and effectiveness in subsequent 
studies. The priority research questions, approaches and 
emerging tools were identified based on the expertise of 
the authors, the knowledge gaps they identified and the 
possibilities they could imagine if the knowledge gaps were 
closed (see Suppl. Table 1 for the list of topics the authors 
contributed to in this article). More specifically, we focused 
on research questions concerning the anticipation of emer-
gence, early detection, risk assessment, rapid and efficient 
alert, operational approaches for monitoring the crops 
and the environment, as well as collaboration and com-
munication between various stakeholders. In this article, 
we present the main outputs of this collective work after 
structuring them around four non-exclusive and comple-
mentary research axes (summarized in Fig.  1 and Suppl. 
Figures 1 and 2):

1. Anticipate pest emergence by building innovative 
forecasting capacity. This would include taking into 

Fig. 1 Range of application of the four complementary research axes presented in the article (indicated with color bars) to the main surveillance 
actions for emerging pests in plant health (gray boxes on the left), and their contribution to Integrated Health Surveillance (IHS) and One Health 
components (green gradient boxes on the right). We indicated only the main range of application, but other relationships can exist. For instance, 
broad‑spectrum tools may encompass threats over the different components of One Health, cooperative surveillance systems may include actors 
involved in the different components of One Health; both axes are thus transversal to human, animal, plant and environmental health. In contrast, 
research perspectives that we proposed regarding anticipation of pest emergence and surveillance of the usual suspects mostly concern plant 
health. However, from a methodological perspective the two latter axes may be relevant to the four components of One Health

https://www.inrae.fr/en
https://www.inrae.fr/en
https://www.cirad.fr/en
https://www.anses.fr/en
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account sub-species diversity and adaptive potential, 
making projections over longer time horizons includ-
ing the effects of changes in climate and cropping 
systems, disentangling and quantifying connectivity 
between locations or environments, and improving 
the preparedness of stakeholders and affected areas.

2. Survey pests using broad-spectrum tools that are 
versatile enough to be mobilized for a wide range 
of organisms and by different types of stakeholders. 
These could include molecular or imaging diagnos-
tics supported by artificial intelligence (AI), text min-
ing, monitoring generic matrices such as air, water, 
and sentinel plants.

3. Investigate the usual suspects (i.e., those organ-
isms already listed as quarantine or priority pests) 
from new perspectives and approaches, including 
approaches for improved diagnosis and characteriza-
tion of pests.

4. Build long-term cooperative surveillance systems to 
enhance data-driven alert systems, further dissemi-
nate information to stakeholders and manage plant 
health as a commons* in a One Health perspective.

As depicted in Fig.  1, these four axes directly contrib-
ute to the main conventional actions for surveillance of 
emerging pests (listed in Table 1) but they cover a larger 
area than conventional surveillance. We indeed propose 
in this article to re-delineate surveillance such that it 
encompasses upstream to downstream components with 
respect to the emergence of a pest (adaptation studies, 
risk analysis, forecasting, horizon scanning, knowledge 
production, preparedness, multi-actor coordination, iden-
tification of sentinel matrices for data collection, monitor-
ing, diagnostic, data analysis, information system, etc.). 
Including all these components in surveillance aims to 
develop a comprehensive vision of potential and actual 
emergence of pests and to anticipate their management. 
Another reason for re-delineating surveillance (i.e., push-
ing back its boundaries) is that the scope and diversity 
of plant health issues —due to the vast number of plant 
and pest species, along with the extensive variability in 
terms of trophic links, abiotic environment, spatial con-
nectivity, temporal dynamics, practices, etc.— present 
a unique set of challenges, which remain uncovered by a 
restricted vision of surveillance. These complexities are 
inherent to the concept of One Health which offers valu-
able insights into the interconnectedness of health issues 
in ecosystems (beyond the simplistic notion that One 
Health would only concern zoonotic diseases). Neverthe-
less, embedding plant health surveillance into One Health 
does require substantial adaptation of the application of 
this concept to address the unique challenges associated 
with the diverse and dynamic nature of plant health issues 

globally. Recognizing these complexities, our manuscript 
advocates for an integrated approach to plant health sur-
veillance that leverages interdisciplinary and multi-actor 
collaborations, anticipatory approaches, and advanced 
technologies.

Anticipating the emergence of pests
The widely mentioned axiom that "prevention is better 
than cure" may be applicable to the management of many 
–if not most– cases of pest (re-)emergence (Chhetri 
et al. 2021). In this section, we describe the methods that 
could be mobilized to anticipate pest outbreaks in a given 
region. The aim is to improve the ability to predict both 
the problematic pest species and the communities or 
species of hosts that would be particularly vulnerable to 
these threats, on a long-term horizon. It should be noted 
that the pests of interest here may already be present 
beyond the area of interest with or without explicit or 
official pest status, or may correspond to species that are 
not currently on our surveillance radar but are likely to 
become a problem in the future, in particular because of 
climate change that may favor (faster) completion of pest 
life cycles, thereby increasing their impact on plant hosts 
(see examples in IPPC Secretariat 2021). It is also impor-
tant to emphasize that large-scale anticipation of emerg-
ing pests is a key element of integrated surveillance, as it 
helps to define what to monitor, where and when.

Profiling the pests of the future
By profiling their environmental, life-history traits and 
adaptive characteristics, potential emerging pests can be 
identified.

Environmental criterion
The risk of pest outbreaks in a given region can be pre-
dicted, and thus anticipated, by matching the environ-
mental preferences of species that have been documented 
as problematic elsewhere and formalized in a knowledge 
base, with the environmental conditions in the region 
of interest. This approach, known as species distribu-
tion modeling (SDM; Zurell et al. 2020), involves the use 
of statistical models to relate the occurrence of the spe-
cies of interest to large-scale environmental gradients in 
both native and invaded areas. The potential distribu-
tion of the species in the region of interest can then be 
projected under current environmental conditions, or 
under scenarios of climate, land use or cropping system 
changes (Bebber et  al. 2013; Matzrafi et  al. 2019). This 
approach can be extended to study the niche differentia-
tion and hence agricultural risk for different populations 
or genotypes of the same species, to the extent that dif-
ferent genetic groups may be preferentially associated 
with different environmental conditions (Meynard et  al. 
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2017). Importantly, the performance of SDM models is 
only as good as the quality of the data used to calibrate 
them: Occurrence data may not be of sufficient quality 
for some potentially problematic species to allow reliable 
predictions (e.g., few occurrences available, representing 
a small portion of the potential range, inaccurate locality 
or identification errors). This approach also relies on the 
assumption that environmental preferences are constant 
between the native and introduced ranges of pests, and 
are the main drivers of invasion risk. Interestingly, joint 
distribution models can incorporate species interactions 
and species traits into the modeling process (Caradima 
et al. 2019). However, compared to the simplest correla-
tive SDMs that are more commonly used, this requires 
significantly more information regarding community 
composition and species properties, rather than just sin-
gle species occurrences.

Adaptive criterion
It is the adaptive potential of species and populations 
that enables them to expand their range of favorable 
environmental conditions. Unfortunately, it is still dif-
ficult to integrate this crucial feature into the current 
inferential approaches, which are mainly based on envi-
ronmental data. Early attempts to incorporate adaptation 
into SDMs combined mechanistic distribution models, 
which accounted for physiological constraints, with trait 
heritability estimates which took evolutionary capac-
ity into account (Kearney et  al. 2009). More recently, 
the use of genomic diversity data associated with envi-
ronmental gradients has been advocated as a way to 
detect the genomic loci that drive local adaptation, and 
to predict the genetic composition that increases the fit-
ness of a population in a given environment (Fitzpatrick 
and Keller 2015). In line with this idea, the level of (mal)
adaptation of a population in a new environment can be 
assessed by the difference between its genetic composi-
tion and the optimal genetic composition in the new 
environment, a measure referred to as genomic offset 
(Fitzpatrick and Keller 2015). Genomic offsets are better 
predictors of population fitness than standard environ-
mental distances because they implicitly weight envi-
ronmental variables to account for their influence on 
fitness (Láruson et  al. 2022; Rhoné et  al. 2020). So far, 
this approach has mostly been applied to predict popula-
tion vulnerability to expected future climate change (Bay 
et al. 2018; Tournebize et al. 2022), but it could also be 
used to predict the risk posed by population introduc-
tions to new areas, integrating various environmental 
variables (e.g., climate and host plant features). It should 
be emphasized that genomic offset approaches, like 
SDMs, are data intensive and therefore currently only 
applicable to a limited number of pest species.

Trait criterion
A trait-based framework can help to identify pests that 
are not on our surveillance radar at the moment, but are 
likely to become a problem in the future (Barwell et  al. 
2021). This framework relies on databases of species 
traits that include a large representation of both known 
or future pests and of species that do (or will) not have a 
significant impact on either natural or cultivated ecosys-
tems. The definition of traits in this context is broad and 
may include life history traits as well as host, habitat and 
environmental preferences (Bossy et al. 2019). For exam-
ple, the invasion success of a microbial pest (but also 
some insects such as aphids) could be predicted by life 
history traits such as dispersal modes, reproductive sys-
tems (sexual and asexual), morphological traits, optimal 
growth temperature or virulence factors (Philibert et  al. 
2011). Phylogenies can also be useful for the study of trait 
conservatism and the inference of missing values, taking 
into account evolutionary potential (Fournier et al. 2019). 
Furthermore, the importance of accounting for the envi-
ronment when calculating the invasion fitness of patho-
gens has been demonstrated in ecological studies using 
adaptive dynamics (Papaïx et al. 2015). Interestingly, data-
bases of species traits can also be used to identify species 
assemblies that are vulnerable to invasion. In particular, 
studying community composition along a gradient of vul-
nerability (quantified by exposure or disturbance metrics) 
should help to identify community traits (i.e., mean and 
variance of trait values) that increase risk, as well as the 
potentially damaging species that are more likely to suc-
ceed in these communities (Mouquet et  al. 2012). How-
ever, large databases of relevant traits suitable for this type 
of modeling remain scarce, either to identify pest species 
not currently on our surveillance radar or to identify vul-
nerable communities.

Origin, spread and arrival of pests
Targeted surveillance and control measures can be 
implemented by identifying the geographic origin and 
the potential pathways responsible for the introduction 
of pests into new areas. Pests are introduced and spread 
by a variety of means (airborne particles, animal vec-
tors, movement of goods and people, etc.). Rather than 
relying solely on epidemiological parameters, examining 
the connectivity of transport and trade hubs provides 
a fuller understanding of the spread of pests. Recent 
advances in data integration have made it possible to 
simulate the dynamics of pest spread in a realistic man-
ner. For example, the continental spread pathways of the 
airborne wheat stem rust (Puccinia graminis f. sp. tritici) 
were studied using Lagrangian simulations of air mass 
movement (Meyer et al. 2017). This framework has been 
adapted into a real-time early warning system for rapid 
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disease outbreak response by policymakers (Allen-Sader 
et  al. 2019). Combining such connectivity models with 
species distribution models (see “Environmental crite-
rion” section) may be a promising way to prioritize sur-
veillance to the most connected suitable environments 
for a pest. The main aim of such approaches is not to 
pursue the goal of accurately pinpointing the exact entry 
pathway for any pest, but to leverage connectivity data 
for a probabilistic assessment of entry risk. Scientists 
are also using genetic polymorphisms to track pest inva-
sion routes (Estoup and Guillemaud 2010). This involves 
the reconstruction of the geographical pathways and 
demographic features that were taken up by individuals 
from a set of sampled invading and native populations. 
With the development of genome-wide genetic mark-
ers and new statistical methods, it is possible to unravel 
the recent history of populations with an unprecedented 
level of precision (Gautier et  al. 2022). The combina-
tion of genomic and transport/connectivity data might 
reinforce hypotheses about pathways by which emerg-
ing pests arrived, and subsequently enhance our ability 
to probabilistically assess possible pathways for future 
emerging pests. Moreover, the combination of genomic 
data with environmental and phenotypic data (includ-
ing properties of agronomic interest such as virulence 
spectrum against resistance genes already deployed or 
resistance to available plant protection products) can 
also improve risk assessment of a genotyped target pest 
population by taking into account its expected fitness in 
a new environment (see “Adaptive criterion” section). 
Conversely, the latter approach could be used to more 
accurately identify the most likely source area(s) of the 
invasive population(s), including regions from which no 
genotyped population sample is available.

Anticipating regulation capacity and emergence risk 
from microbiomes
The advances of metagenomics and metabarcod-
ing approaches have shed a new light on the plethora of 
microorganisms associated with plants (in, on and near 
their tissues) or living in close interactions with plant 
pests. Hence, plant health is increasingly recognized as 
resulting not solely from the absence of pests, but as the 
result of a complex web of interactions between plants and 
their associated macro- and microorganisms, i.e., the phy-
tobiome. It is often observed that denser or more complex 
interactions among species of the phytobiome generally 
contribute to biotic regulation, including pest regulation; 
and plant health may equally rely on direct competition 
within the phytobiome and the intrinsic plant immunity 
(Vannier et  al. 2019). Transposed to pest surveillance, 
this paradigm opens up the possibility of monitoring the 
quantity and quality of species interactions to infer and 

anticipate the regulatory capacity of the plant environment 
from the composition and structure of the phytobiome: 
this surveillance process is referred to as next-generation 
biomonitoring (Bohan et  al. 2017). For example, using 
AI, the suppressiveness of soils was assessed solely from 
the nature of the bacterial communities in soil (Zhang 
et al. 2022); and root microbiota were shown to stimulate 
or prime the plant immune system by enhancing plant 
defenses against a broad spectrum of pathogens (Vannier 
et al. 2019). Nevertheless, we need to further identify indi-
cators of functional diversity and phylogenetic signals that 
can be used as predictors of the capacity of microbiomes 
to foster plant health.

Another discovery of microbiota studies is that dis-
eases, even when caused by an identified primary agent, 
are the result of interactions between a (generally small) 
subset of the taxa composing the phytobiome (Bass 
et al. 2019). This subset (possibly including prokaryotes, 
eukaryotes, and viruses) is the pathobiome (Vayssier-
Taussat et al. 2014), and can be identified, e.g., with net-
work-based community ecology approaches (Jakuschkin 
et  al. 2016). Monitoring all species in the pathobiome 
and investigating its functioning is a promising approach 
for accelerating the detection of emerging pests and the 
identification of conditions under which pests emerge. 
For instance, the risk of the citrus greening disease has 
been predicted based on the bacterial flora of citrus 
plants (Liu et  al. 2023), and Doonan et  al. (2020) has 
shown how pathogenicity can emerge from interactions 
among the pathobiome involved in acute oak decline.

From a general perspective, a versatile approach to 
anticipating potentially emerging diseases could be to 
monitor the key functions of disease-related processes 
in relation with the structure and function of the neutral 
and beneficial microbiome rather than targeting single 
species of the pathobiome.

Anticipating the impact of changes in cropping systems 
on plant health
Changes in agricultural and forestry practices motivated 
by environmental concerns provide contrasting effects on 
pest emergence and spread (Petit et al. 2020). The result-
ing new balances may be beneficial (e.g., reduced fertiliza-
tion may limit disease development; Lekberg et al. 2021) 
or detrimental (e.g., reduced tillage may benefit pests 
previously considered secondary; Kerdraon et  al. 2019). 
Similarly, while organic farming can promote natural 
pest regulation (Muneret et  al. 2018), pesticide reduc-
tion is also associated with the re-emergence of certain 
endemic pathogens (e.g., grape black rot in vineyards; Pir-
rello et al. 2019). Introducing disease-tolerant plants may 
increase risks for sensitive varieties (Doropoulos and Roff 
2022). These plants can silently harbor pathogens, acting 
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as disease reservoirs and posing a threat to nearby sus-
ceptible crops, leading to unexpected disease outbreaks. 
The mobilization of innovative methods could address 
the uncertainty associated with these complex feedback 
loops. For example, plant diversification is recognized as 
a global solution to limit (re-)emergence at the scale of 
the whole agroecosystem (Vialatte et al. 2021). However, 
plants can act as (i) reservoirs of previously insignificant 
pests (e.g., stem rust caused by Puccinia graminis alter-
nating on barberry; Saunders et  al. 2019), (ii) reservoirs 
of vectors of (re-)emerging pathogens, (iii) means of pest 
introduction, or (iv) natural traps for pests. The practi-
cal implementation of solutions based on plant diversi-
fication will hence require reactivating epidemiological 
knowledge in order to ensure effective prophylaxis against 
various pests, and this for different types of crop diversifi-
cation (Précigout et al. 2020). The transitional period we 
are entering requires improved knowledge of the diversity 
and biogeography of pests to activate relevant regulations 
based on phytosanitary standards with the goal of limiting 
their introduction, while addressing the complex issue of 
derogatory regulation (e.g., neonicotinoids in sugar beet; 
Ristaino et al. 2021). Finally, in the face of changes in crop-
ping systems (e.g., new regulations on pesticide use, irri-
gation, fertilization, etc.), adaptive evolutionary changes 
in pests should be anticipated (Précigout et al. 2020).

Toward an integrated biosecurity risk framework
Focusing on anticipation, the previous subsections 
explore research axes that extend surveillance upstream 
to the emergence of a pest. Here we highlight how these 
axes can contribute to an integrated biosecurity risk 
assessment, aiming to provide key information for estab-
lishing monitoring programs, implementing preventive 
measures and improving the preparedness of authorities 
(Probert et al. 2020; Jarrad et al. 2015; see also Text box 1 
for a broader vision of preparedness). Pre-impact risk 
assessment consists of assessing the risk of introduction, 
establishment and spread of pests before they arrive. The 
pre-impact ranking of species is based on a wide range 
of species-level characteristics (see “Profiling the pests of 
the future” section) and available information on poten-
tial pathways of introduction and spread (see “Origin, 
spread and arrival of pests” section). It relies on methods 
such as consensus horizon scanning (Roy et al. 2019) and 
multi-criteria analysis (European_Food_Safety_Authority 
et al. 2022). Once high-risk species have been identified, 
species distribution models provide an additional level of 
information by indicating environmentally suitable areas 
as a function of current or future climate conditions (see 
“Environmental criterion” section). This pre-impact risk, 
combined with an estimate of the economic or ecological 
harm that might result if the species became established 

(i.e., the post-impact risk), defines the integrated risk, 
and indicates where monitoring must be concentrated. 
Such a pre-emptive risk assessment may not be fully fea-
sible for some potential pests, mainly due to data and 
knowledge limitations. However, even subtle information 
can be useful, for example to allocate monitoring effort 
more efficiently than without any information. It can also 
help to identify knowledge and data gaps that need to be 
filled in order to iterate the analysis and ultimately carry 
out an integrated risk assessment. Although not covered 
in the previous sections, post-impact risk assessment 
should not be neglected. Based on knowledge of estab-
lished biological invaders, it provides a better under-
standing of invasion success, pathways and management 
strategies. By identifying gaps in prevention and manage-
ment strategies, post-impact analyses can also help pre-
vent multiple reintroductions and improve preparedness. 
Finally, integrated risk assessment over longer time hori-
zons, including under different scenarios of climate, land 
use and cropping system changes, would be improved by 
more systematic considerations of the adaptive capacity 
of potential pests (see “Adaptive criterion” section).

Text box 1: At the crossroads of anticipation 
and cooperation
Text box 1.1: Developing resilience and preparedness 
of territories
The overall resilience and preparedness of geographic 
areas in the face of emerging plant pests can be based 
on two broad strategies: (i) the promotion of landscape 
diversity at all scales, and (ii) the establishment of an 
effective and extended pest surveillance strategy that 
decreases the detection time of new pests, maximizes 
the responsiveness for efficient prevention or eradica-
tion of detected introductions, and even reduces the 
risk of pest introduction (e.g., the assessment of pest 
origins and pathways discussed in “Origin, spread and 
arrival of pests” section could lead to pest control at 
origin or during transport, depending on feasibility, 
thereby reducing pest arrival). Increasing crop diver-
sity at the individual farmer level is both a strategy of 
bet-hedging (spreading the risk of potential epidemics 
across multiple crops) and of effective agro-ecological 
crop protection that reduces pest spread in the advent 
of an outbreak. The application of the same idea at the 
landscape scale (Picard et al. 2019), in addition to its 
use as a mean for managing pest-resistant varieties 
(Rimbaud et  al. 2021), can extend benefits beyond a 
single farm, but requires coordination of stakehold-
ers toward a common goal (Kneeshaw et  al. 2021). 
Other coordination issues arise in the definition of 
a surveillance strategy and the implementation of a 
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surveillance network. For this reason, and for rea-
sons of efficiency (optimal allocation of resources, 
large-scale view of spatio-temporal pest detection pat-
terns), state-level administration of pest surveillance 
is often required. The funding of surveillance is also 
a key challenge, which may need state intervention 
as well as the involvement of non-agricultural actors 
providing human and economic resources, especially 
when a pest is not yet present. Indeed, farmers may 
only be willing to pay for surveillance and crop loss 
compensation schemes if they expect high crop losses, 
and are highly confident in the effectiveness of the 
surveillance/eradication strategy and the return on 
investment.

Text box 1.2: Continuously updating the focus  
of awareness
In order to achieve a high level of vigilance in the face 
of emerging situations, awareness-raising and training 
on plant health issues is required for both the agricul-
tural community and the general public. It prepares 
individuals for circumstances that require a rapid 
response and enables collective problem solving (e.g., 
to prevent the introduction of regulated organisms or 
to contain/eradicate them once they have been intro-
duced). Awareness and training initiatives should 
be developed in the long term and in an anticipated 
manner, because emergency responses are usually not 
conducive to their implementation. For example, in 
the early stages of the COVID-19 pandemic, public 
health emergency measures such as ensuring health 
service availability took precedence over health lit-
eracy development (Paakkari and Okan 2020). It is 
therefore essential to develop information systems, 
tools, services and visuals that enable individuals to 
understand current and future health issues (Soubey-
rand et al. 2020), to adopt practices that prevent pests 
from spreading, and to be able to detect them. Many 
such tools already exist. These include pest maps, 
real-time web maps, smartphone applications, media 
campaigns, educational signs in public spaces such as 
national parks, and notices at borders. There is a need 
for greater dissemination of these elements through-
out society, which may be achieved in part through 
improved formats taking advantage of the new possi-
bilities of information technology (IT).

Surveying for pests using broad‑spectrum tools
For high risk pests, conventional surveillance (see 
Table  1) usually deploys means of detection that are 
highly pest-specific. With a substantial and almost con-
stant increase in the number of pest species introduced, 

this strategy is expected to reach its limits in terms of 
cost and effectiveness. The development of broad-spec-
trum tools could contribute to overcoming these limita-
tions. The approaches described below are in this vein 
and are expected to improve or complement existing 
non-pest-specific surveillance approaches (e.g., generalist 
baits and lures, site inspections, industry vigilance, moni-
toring of decline symptoms and general surveillance by 
the public).

AI‑enhanced molecular or image‑based diagnostics
With progress in DNA/RNA library preparation, long- 
and short-read sequencing, and AI, we can now expect 
progress toward versatile and rapid detection systems for 
plant pests that can be applied in the laboratory, or even 
in the field, across a wide range of organisms. For some 
microorganisms (viruses, bacteria, fungi and fungal-like 
pathogens) such high-throughput molecular approaches 
have had marked success and are gradually nearing broad 
application in diagnostic laboratories (Johnson et  al. 
2023; Kutnjak et al. 2021). Overall, an important limita-
tion for these approaches (beyond the funding issue) is 
the availability of appropriate skills in both the academic 
sector and among plant protection operators. Another 
issue is the lack of complete and accurate sets of molecu-
lar markers for all species and, in particular, of sequence 
databases validated by taxonomists or pathologists for 
the identification of organisms (Rasplus et  al. 2023). 
Indeed, existing molecular tools perform poorly on 
novel/undocumented species as they rely on matches to 
known pests. Identifying new emerging organisms is fur-
ther made difficult because molecular signature libraries 
for endemic organisms are often non-existent. Progress 
in our ability to sequence DNA from museum collections 
could contribute to improving sequence databases for 
some groups of arthropods (Burrell et al. 2015), provided 
that identification of the museum specimens is accurate. 
This could also help to document insect pest-parasitoid 
associations leading to insights for biocontrol. However, 
determining the identity of the massive numbers of sam-
ples needed to develop databases of adequate size —of 
contemporary and museum specimens— will require 
automation.

Automated image classification, in particular for symp-
tomatic plants, has largely benefited from the develop-
ment of deep learning algorithms based on convolutional 
neural networks (Redford et  al. 2023). This approach 
however often requires large sets of specimens for train-
ing and validation. Research could focus on the optimi-
zation of AI-based approaches to balance the trade-offs 
between imprecision from a training set of insufficient 
size, validation samples and the curse of overpreci-
sion (overfitting) caused by an excess of samples. These 
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problems could be at least partially overcome by domain 
generalization, such as transfer learning or data augmen-
tation (Lee et al. 2020; Wang et al. 2023). Active learning 
could also reduce annotation effort by identifying sam-
ples that are worthy of labeling (Atighehchian et al. 2020). 
Because methods based on neural networks can handle 
and combine different types of data, including molecular 
and image-based data, they are expected to become more 
common in pest surveillance in the coming years.

Prospecting a wide range of data sources for anomalies
Monitoring generic disease-associated phenotypes like 
dieback or decline symptoms of plants, rather than mon-
itoring specific pests, plays a crucial role in the general 
surveillance of plant health. Various approaches have 
been adopted for this purpose, including visual inspec-
tions, citizen science data, and remote sensing (Baker 
et al. 2019; Chan et al. 2021; Goodwin et al. 2021). This 
generalist surveillance can be likened to syndromic sur-
veillance in human and animal health (Henning 2004; 
May et  al. 2009). The COVID-19 pandemic has dem-
onstrated the proliferation of opportunities to detect 
health-related anomalies, including the discovery of indi-
cators from analyses of seemingly unrelated data sources 
such as consumer reviews of popular products or images 
of hospital parking lots (Beauchamp 2022; Hennin 2022). 
Likewise, indirect measurements could be used for 
monitoring plant health. The challenge lies in develop-
ing real-time data and analysis systems that signal alerts 
proactively rather than retrospectively. Numerous oppor-
tunities can be explored in this regard, such as detecting 
anomalies in the sales of plant and phytosanitary prod-
ucts, analyzing plant-related posts on social media, and 
even exploring innovative possibilities such as monitor-
ing volatiles or sounds emitted by stands of plants (Khait 
et  al. 2023). Other possibilities are mentioned in “Alter-
native surveillance approaches based on data mines” 
section.

Horizon scanning in the age of big data, AI and open sci‑
ence
Continuous, active, and comprehensive monitoring of 
health and scientific knowledge is necessary for broad-
spectrum surveillance (Morris et  al. 2022). Currently, 
these approaches are mostly manual and focus on a 
specific subject. However, keeping knowledge in a field 
up to date is more challenging than ever. Knowledge is 
evolving rapidly, is obtained from sources and processes 
that are more or less reliable, and essential signals can 
be drowned out by a high degree of information redun-
dancy over an increasing diversity of subjects making it 
beyond human capacities to keep abreast. At the same 
time, public policies on surveillance require short-term 

risk anticipation and identification of weak signals. There 
has been some progress toward development of systems 
that will provide the necessary reactivity.

In this context, event-based surveillance (EBS) sys-
tems (O’Shea 2017) can be used to monitor and detect 
plant health threats. EBS tools (e.g., MedIsys/EMM to 
produce EFSA newsletters, PestAlert, ESV Platform 
pipeline to produce international health monitoring bul-
letins, ProMed, PADI-web; see Suppl. Table 2 for details) 
monitor textual data (online news, publications, etc.) and 
other unofficial sources, with the primary aim to provide 
timely information to users on disease outbreaks occur-
ring worldwide. These systems can integrate other struc-
tured and accessible data. These data are limited to a few 
targeted databases (e.g., EPPO Global Database, CABI 
Digital Library, FLOW, World Auchenorrhyncha Data-
base, e-phytia; see Suppl. Table 2 for details), which are 
non-exhaustive and updated manually at variable time 
intervals. Further progress is needed to address the sig-
nificant questions of the relevance of extracted informa-
tion in the context of the very rapid evolution of expert 
knowledge and to meet the dual need for data interop-
erability (i.e., FAIR principles; Wilkinson et al. 2016) and 
knowledge synthesis at a given time. An interdisciplinary 
approach combining biology, natural language processing 
(Jiang et al. 2023), and knowledge representation (Bossy 
et al. 2019) promises to achieve the ambition of collect-
ing, structuring, and sharing the knowledge of a targeted 
domain in an unbiased, massive and automated manner. 
In addition, the formalization of knowledge would make 
it possible to cross-reference information of all kinds 
(e.g., genetic, ecological, geographic) and origins (e.g., 
citizen, scientific, professional data). Moreover, this para-
digm shift would enable the detection of inconsistencies 
between observations and knowledge (novelty or noise?) 
and identify and explain new morsels of knowledge to 
be validated. Predictive capabilities of the AI frame-
work will generate novel hypotheses and out-of-the-box 
biological scenarios. However, this path will require the 
removal of many conceptual and methodological barriers 
in the three above-mentioned scientific fields or at their 
interface.

Monitoring generic substrates to develop multi‑pest sur‑
veillance
Generic substrates, including natural environments (e.g., 
air, water and soil) and human-mediated dissemination 
pathways (e.g., transportation and commercial exchange 
routes), can provide critical information on disease risk 
when they indicate connections of specific environments 
where disease outbreaks can occur or when they can be 
sentinels for the actual presence of pests at a broader scale 
(Crowl et al. 2008). Therefore, they should be considered 
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as targets of surveillance. Developing such generic sur-
veillance would require monitoring the substrates that 
can spread pests, such as air and water, as well as trade 
and transportation routes that may inadvertently dissem-
inate pests. Such substrates are challenging to monitor 
since they are spatially vast and often dynamic. Therefore, 
appropriate surveillance strategies must be designed to 
optimize the available monitoring resources in order to 
achieve a specific surveillance objective. These strategies 
should provide meaningful criteria for the selection of 
sampling sites based on the probability of detection and 
the representativeness of the site with respect to the envi-
ronments that they connect (i.e., their degree of connect-
edness). At regional and continental scales, this requires 
elucidating the network of possible transportation/dis-
semination pathways. For freshwater environments, this 
can be achieved quite straightforwardly, since the natu-
ral division of the landscape into waterways may provide 
an intuitive set of sentinel sites (Bailey et  al. 2020). The 
atmospheric dissemination network is more challeng-
ing since air mass movements are less easily observable 
and change constantly, although great progress has been 
made in the last decades to describe and characterize this 
substrate (Radici et al. 2022; Richard et al. 2023; Schmale 
and Ross 2015). Human-mediated dissemination net-
works, including transportation and trade (via roads, 
railways, airlines, shipments), are increasingly recog-
nized as major drivers of pest emergence (Chapman et al. 
2017; Hulme 2009; Seebens et al. 2017; Sikes et al. 2018). 
Whereas these networks can be described in terms of 
topology, challenges remain in the design of appropriate 
monitoring strategies due to the ever-increasing volume 
of transport and traded goods, as well as tradeoffs with 
industry and national security. In addition to assessing 
the intensity of environmental connectedness provided 
by different substrates, we will need generic pipelines to 
identify relevant samples in these substrates. Biomoni-
toring of environmental DNA (eDNA) offers the possi-
bility of sampling pests in all substrates with a common 
suite of methods and identification pipelines (Bohan et al. 
2017; Cordier et al. 2021); see also Text box 2 envisioning 
broad-spectrum biomonitoring of viromes from sentinel 
insects.

Sentinel plants
Sentinel plants are defined as plants grown near high-risk 
sites that are inspected at regular intervals for signs and 
symptoms of pests (Eschen et  al. 2019). In addition to 
their inherent sensitivity to certain pests, their power as 
“phytosensors” can be altered by wounding, or with semi-
ochemicals to render them attractive to a given target 

pest species. Inspections of sentinel plants represent one 
of several surveillance activities, after inspections during 
border controls, that can be carried out to detect recently 
introduced non-native pests soon after their arrival, 
increasing chances of eradication and control.

However, the detection of alien pests prior to their 
arrival is even more important from a preventive per-
spective and, in the context of plant material trade, is 
the object of various approaches including a standard 
from the European Plant Protection Organization (EPPO 
2020). Ex-patria sentinel plantations (Eschen et al. 2019) 
consist of plants from an importing region introduced 
in an exporting region and surveyed for colonization by 
pests from the exporting region. Such sentinel plantations 
may involve the planting of pest-free seeds or seedlings of 
different plant species, with the possibility to adjust the 
plants’ genetic diversity and the number of individuals 
(Roques et al. 2015). They may also correspond to collec-
tions of plants from the region of importation in botani-
cal gardens of the exporting region, which may present 
mature individuals representing a fixed genetic diversity 
and few individuals (Kirichenko and Kenis 2016). These 
approaches are complementary because young plants are 
likely to show only damage to foliage and roots whilst 
older individuals in botanical gardens may reveal dam-
age on other plant parts (e.g., trunk and branches of 
trees; Roques et al. 2017). Identification of novel associa-
tions between hosts from the importing region and pests 
from the exporting region provide information about 
the potential impact of introducing these pests into the 
importing region. However, subsequent tests under quar-
antine conditions are essential to confirm the pest poten-
tial for the importing region. Experiments carried out in 
China and Russia have already shown the interest of such 
sentinel plantations to identify pests potentially harm-
ful for tree species native to Europe (Roques et al. 2015; 
Vettraino et al. 2015) or North America (Ernstsons et al. 
2022). Their generalization to herbaceous plants seems 
possible.

A second approach corresponds to sentinel nurser-
ies (or in-patria plantings; Eschen et al. 2019). These are 
plantings of species in their native range, either in nurs-
eries or in open fields, but without phytosanitary treat-
ments. Surveys and identification of native-to-native 
pest–host associations in these plantations provide infor-
mation on the likelihood of transportation of the harm-
ful organisms with traded plants. For example, the huge 
damage noted on Chinese Buxus in the sentinel nurseries 
would have provided warnings about the possible intro-
duction of the box tree moth prior to its arrival in Europe 
(Eschen et al. 2019).
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Interoperability of surveillance systems of health and bio‑
diversity
Given the great heterogeneity of monitoring targets and 
tools described in previous sections, we envision three 
key challenges to consider in making surveillance sys-
tems effective at large scales and fit to different purposes.

The first challenge is institutional and economic (Mey-
nard et al. 2020). Data gathering, sharing and early analy-
sis are key to the success of early detection of outbreaks 
or shifts in ecosystem health. Transboundary practices 
and policies can hinder monitoring and management, 
which need to cover national and transnational strategies, 
sometimes spanning distinct governmental and non-gov-
ernmental organizations. The political will and associated 
funding are fundamental in this context, given our global 
economies. For example, developing in the Global South 
tools that allow enhanced surveillance, early detection 
and management before a sanitary crisis arises is key to 
sustainable food security and human well-being world-
wide (Sánchez Herrera et al. 2024).

The second challenge is technological, and is com-
monly associated with the issue of big data (Farley et al. 
2018; Wüest et al. 2020) and with interoperability of data 
of very different sources and types as stressed by the 
semantic web community (Jonquet et al. 2018). This inte-
gration requires informatics systems to share common 
reporting standards, and analysis tools accessible to users 
with a large range of expertise. Taxonomic and techni-
cal expertise should be geared to act efficiently on key 
check-and-balance points along the surveillance chain. 
The monitoring and analysis systems also need to be fully 
replicable, to be able to update risk assessments con-
tinuously with incoming meteorological, epidemiologi-
cal or other information. Moreover, the system needs to 
deal with heterogeneous data quality, depending on the 
data source (e.g., citizen science vs expert monitoring) 
and detection system (e.g., eDNA surveillance vs remote 
sensing). Data analysis should therefore incorporate 
enough flexibility to use datasets that are heterogeneous 
in terms of quality and nature and provide uncertainty 
estimates.

The third challenge is to clearly define which facets of 
crop health we want to analyze and then identify effective 
quantitative indicators that provide information related 
to crop health. Some aspects of crop health related to 
the presence of a pest or to the level of crop damage are 
quite straightforward to monitor. However, other aspects 
are much more difficult to tackle: lag effects between 
pest presence and crop damage, crop resistance to pest, 
effective natural pest control, impact on harvest quality, 
etc. Defining crop health and linking system property to 
tractable indicators need both disciplinary research to 
identify relevant indicators, but also interaction between 

disciplines (e.g., ecologists, biologists, physicists) to 
match what is technologically possible to what is ecologi-
cally sound (Cheruvelil and Soranno 2018). Pests are part 
of an ecological network of multiple interactions that 
influence their dynamics (Hassell et  al. 2021) and some 
hidden or non-intuitive interactions may be important 
in the observed dynamics (Vasseur et  al. 2013). Moreo-
ver, taking into account the complexity of crop health 
requires a shift from segmented research to system-
wide research, to understand the separate and interac-
tive effects of pests in relation to production methods 
on both crop production quantity and quality, and their 
impact on the environment.

Text box 2: Monitoring viromes in insects 
for emergence anticipation and surveillance
“Anticipating the emergence of pests” section envi-
sions, in particular, the anticipation of regulation 
capacity and emergence risks from microbiomes. 
“Surveying for pests using broad-spectrum tools and 
Surveying the usual suspects from new perspectives” 
sections deal with diverse biotic and abiotic matrices 
that may be used to monitor pests from broad-spec-
trum and specific viewpoints. At the crossroads of 
these topics, monitoring the viromes of non-vector 
“sentinel insects” appears as a promising avenue for 
anticipation and surveillance. Sentinel insects may be 
phytophagous or pollinator insects visiting crops, res-
ervoirs, and any pest habitat in the landscape, or may 
be predators (e.g., of vectors, of phytophagous insects, 
of predators). The metagenomics analysis of such 
sentinel insects makes it possible to detect emerg-
ing viruses and variants (and possibly other pests) in 
plants, vectors, polyphagous insects, regulator insects, 
etc. Several examples illustrate the potential of this 
approach: A study used phytophagous insect pests to 
monitor virus abundance and diversity in crops, and 
showed that trophic accumulation results in a higher 
diversity of plant viruses in insect pests compared to 
host plants (François et  al. 2021). Honeybees were 
used to detect avocado viroids within 100  m of the 
sampled hives (Roberts et  al. 2023). The gut content 
of carnivores was exploited for the molecular detec-
tion of plant viruses ingested by their herbivorous 
prays (Rosario et  al. 2013). Opportunistic omnivo-
rous ants were used as natural and efficient samplers 
of a tropical forest patch for the detection of virus 
sequences initially attached to different faunal and flo-
ral compartments of the patch and finally contained 
in the ants’ digestive tracts (Fritz et  al. 2023). These 
examples illustrate how metagenomics applied to sen-
tinel insects can be used for surveillance purposes. 
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Nevertheless, three key questions remain: (i) Which 
insects are relevant sentinels for identifying and quan-
tifying all the relevant viruses in a given environment? 
(ii) How to sample these insects in the landscape and 
over time (either for anticipating regulation capacity 
and emergence risks, or for early detection)? (iii) How 
to reduce uncertainties about the eventual host plant 
species in the landscape that were carrying the patho-
gens detected in the sentinel insects? The answers to 
these questions are obviously dependent on the spe-
cific environment and trophic chains at stake, and 
necessitate further multidisciplinary research.

Surveying the usual suspects from new perspec‑
tives
Novel strategies could be employed to better detect pests 
of concern that are often the objects of plant health sur-
veillance, what we refer to here as the usual suspects. 
Such approaches remain challenged by the need to scale 
up, adapt and make data interoperable in phytosanitary 
surveillance systems.

Novel ways to detect known pest species
Multiple new sources of information can be used for 
more effective detection and monitoring of plant pest 
species, both in crops and reservoirs.

Surveillance through insect‑related volatiles
Traps baited with pheromones or kairomones (allelo-
chemicals that are favorable to the organism that receives 
the signal) have been used since the 70 s, thereby allowing 
the optimization of control measures in time and space. 
The exponential increase in the introduction of non-native 
insects into other continents includes more and more spe-
cies that had not yet been found outside their native range 
(Seebens et  al. 2018), and thus are not included in the 
quarantine lists. Since these species are unexpected, their 
detection at entry points cannot rely on traps baited with 
specific attractants. However, the deployment of traps 
baited with broad-spectrum semiochemical lures could 
be an early detection tool. For example, a cocktail of 10 
cerambycid pheromones has been tested successfully as a 
generic attractant for the simultaneous detection of mul-
tiple taxa of non-native long-horned beetles (Roques et al. 
2023), and is now routinely used in baited traps for early 
detection in French ports. The addition of plant volatiles 
also enhanced the trapping scope for detection of bark 
beetle invaders. However, the definition of generic baits 
for other insect groups remains highly challenging. The 
detection of odors emitted by insects (pheromones) or by 
the plants they feed on (herbivory-induced plant volatiles) 
may soon offer alternatives to olfactory traps for real-time 

in-field performance. Valuable progress in the coming 
years is expected from the development of the nanochem-
istry toolbox and supramolecular chemistry, and from the 
use of biosensors in which olfactory proteins selectively 
bind specific odorants and are coupled to sensitive trans-
ducers (Bohbot and Vernick 2020; Ivaskovic et al. 2021).

Surveillance by vectors
Using insect vectors as sampling agents in crops and sur-
rounding habitats could help to scale-up early warning 
and long-term monitoring of vector-borne pathogens 
(see Text box  2 for pathogen monitoring from non-vec-
tor insects viewed as sentinels). The specific detection of 
a target pest in its vectors has already been reported in 
areas supposedly free of pathogens based on plant sur-
veillance (Farigoule et al. 2022; Rosario et al. 2015). High-
throughput screening methods may be used on known 
vector-pathogen pairs. While the enrichment of viral 
particles from pools of vectors (vector-enabled metagen-
omics; Ng et  al. 2011) has proven feasible, costs of such 
genome skimming approaches are still prohibitive for 
surveillance of multiple pathogens over large geographi-
cal and temporal scales. Indeed, pathogens might not be 
detected due to competition between target and non-tar-
get nucleic acids during the sequencing process. Moreo-
ver, reference databases for assigning genomic fragments 
to any target species or strain are far from being readily 
available. The development of protocols to target multi-
ple genomic regions of the most damaging pathogens to 
European agriculture in vector communities (e.g., using 
amplicon sequencing or RNA probes to capture new vari-
ants) would be helpful both to discover unknown vectors 
and for the early detection of pathogens.

Surveillance by automated imaging
Recent technological advances allow, or will soon allow, 
image capture of the field at a wide range of spatial and 
temporal scales and resolutions, from remote sensing or 
drone images, handheld sensors (e.g., smartphones), to 
real-time image capture by automated laser sensors. In 
particular, in the area of plant health, many published 
studies have shown, at least at the proof-of-concept level, 
the potential of optical sensors and computer vision 
methods for in situ automated detection of specific dis-
ease symptoms and insect pests, including vectors of 
plant pathogens (Mahlein et  al. 2018; Nansen and Elli-
ott 2016; Oerke 2020). A desirable feature of automated 
imaging is its capacity to detect some diseases even when 
plants are presymptomatic or asymptomatic (Galvan 
et  al. 2023; Hornero et  al. 2021; Oerke 2020). However, 
some challenges should be addressed for a broader use 
of image-based phenotyping and a more efficient sur-
veillance of (re-)emerging pests affecting agrosystems 



Page 14 of 29Soubeyrand et al. CABI Agriculture and Bioscience            (2024) 5:72 

and forests (Luo et  al. 2023). First, there is a need to 
work with pathologists, entomologists and field experts 
to build and share large annotated datasets on targeted 
diseases or insect pests to use state-of-the-art machine 
learning models that solve classical problems in com-
puter vision (e.g., identification, object detection, seg-
mentation) with the best performance (Chai et al. 2021). 
In this process, domain generalization approaches may 
overcome the lack of ground-truth knowledge (see “AI-
enhanced molecular or image-based diagnostics” sec-
tion). Another challenge is to define and acquire the best 
signals (e.g., wavelengths) to improve detection of target 
organisms. This hardware development is particularly 
important to provide future optical sensors dedicated 
to surveillance of disease symptoms and insect pests 
(Mohammad-Razdari et al. 2022).

Discovery and surveillance of reservoirs
Pests are often not restricted to their main cultivated 
host plant(s). They can infect weeds within the cropped 
field, wild plants in surrounding ecosystems or ornamen-
tal plants on nearby private properties (Yazdkhasti et  al. 
2021). Their life cycle can be complex, with different 
stages in various substrates such as air, water, soil or plant 
products (Morris et al. 2022). Often underestimated, non-
cultivated plants and alternative substrates can play a 
crucial role in the dynamics of epidemics as shelters for 
pathogens or insects (pests or vectors). Thus, these reser-
voirs should be integrated into disease surveillance strate-
gies and risk assessment. However, identifying them can 
be challenging for many reasons. For example, infected 
plants may be asymptomatic, their abundance can vary 
in agroecosystems, and the insect vectors are not always 
known or may be highly diverse. Consequently, reservoir 
discovery may involve extensive sampling from fields or 
biorepositories, followed by conventional or advanced 
pest detection methods, which may be ubiquitous (see 
“Monitoring generic substrates to develop multi-pest sur-
veillance and Sentinel plants” sections) or more specific 
(see “Diagnostics with dogs, Monitoring the evolution of 
emerging pest populations and Monitoring resistance to 
plant protection products” sections; Brooks et  al. 2022). 
The use of insect vectors collected from the environment 
(see “Surveillance by vectors” section) can help identify 
potential reservoir plants (Inaba et  al. 2023). After pest 
detection, integrated research is required to decipher their 
ecological cycles in agroecosystems, identify the drivers 
of virulence, and quantify spillover potential at the field 
and landscape levels (see “Fine-tuning surveillance below 
the species level” section; Morris et al. 2022; Papaïx et al. 
2015; Power and Mitchell 2004). Once characterized, res-
ervoirs need to be monitored using approaches that may 

differ from those used for standardized and referenced 
field crops (see “Surveillance by automated imaging, Con-
trolled-cost surveillance approaches, Controlled-cost sur-
veillance approaches, Alternative surveillance approaches 
based on data mines, Facilitating the integration of data 
from multiple sources and Interpolation and extrapola-
tion of information” sections).

Diagnostics with dogs
Dogs possess remarkable olfactory and memory skills 
that have been employed empirically over millennia to 
detect and localize a broad range of scents, but only in 
recent decades to detect diseases (Juge et  al. 2022). The 
use of sniffer dogs, particularly in the fields of medi-
cal diagnostics and conservation biology, has expanded 
rapidly in recent years. In particular, dogs have demon-
strated a great ability to detect human, animal and plant 
pathogens (Gottwald et al. 2020; Jendrny et al. 2021) and 
a number of threatened and invasive species, including 
invertebrates (Grimm-Seyfarth et  al. 2021). This rapidly 
growing field opens up invaluable opportunities for plant 
health, with respect to the monitoring of pest species of 
concern. Wider use of sniffer dogs would allow low-tech, 
real-time and mobile detection in various environments 
(crops and their environment, cargo zones, etc.), with a 
sensitivity that would allow earlier detection than with 
traditional molecular or image-based techniques (Got-
twald et  al. 2020). However, for optimal deployment of 
canine olfactory detection, it is necessary to better under-
stand the olfactory capabilities of detection dogs and the 
factors that influence their performance, particularly in 
real-world conditions. Moreover, to ensure high-quality 
reproducible results and large-scale deployment (for 
numerous pests, with numerous dogs), it is crucial to 
establish standardized training designs and performance 
assessments that meet the rigorous validation standards 
employed in laboratory detection methods (Juge et  al. 
2022), noticing that dog training is generally pest-specific.

Fine‑tuning surveillance below the species level
Anticipating and targeting pest monitoring and control 
often requires the identification, within pest species, of 
particular populations that pose an elevated risk. The 
subsequent paragraphs highlight the main situations in 
which surveillance is conducted at an infraspecific level. 
They collectively cover four necessary steps to monitor 
populations of concern: (i) defining which population 
may be of concern, (ii) identifying in which environments 
they are likely to emerge, (iii) developing specific diag-
nostic tools that are sensitive enough for early detection, 
and (iv) implementing monitoring actions in relevant 
environments.
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Monitoring the evolution of emerging pest populations
The worldwide experience with COVID-19 and its causa-
tive agent (SARS-CoV-2) has reemphasized the need to 
monitor the causative agent of a disease at the level of the 
genotype (Dorp et  al. 2020). Beyond the viral perspec-
tive, this requirement may apply to populations of all pest 
groups. Different genotypes from the same species may 
differ substantially in their transmission, colonization and 
aggressiveness on individual hosts. These life history traits 
shape pest dynamics and determine major agronomic fea-
tures such as host range, and damage on resistant and tol-
erant cultivars as well as resistance to pesticides (Latorre 
et  al. 2023). Besides monitoring individual genotypes, 
it is also important to characterize coinfections, as they 
tend to generate new genotypes with enhanced virulence 
potential through genomic recombination (Bhat et  al. 
2022), alter population dynamics (Susi et  al. 2015), and 
impact crop damage (Bellah et  al. 2023). Whatever the 
nature of the (re-)emerging organism —virus, bacterium, 
fungus, oomycete, nematode or arthropod— monitoring 
the evolution of pest populations typically involves a large 
number of samples that are characterized using molecu-
lar genotyping or whole genome sequencing. The present 
diversity of high-throughput sequencing technologies 
provides exciting opportunities to obtain low-cost and 
rapid in-field genomic data to track pathogen genotypes 
(Radhakrishnan et al. 2019). Together with adequate bio-
informatics tools and population genomics concepts, 
this approach is used to monitor ongoing epidemics and 
reveal the origin of specific genotypes (Campos et  al. 
2021; Jombart et  al. 2014). Estimating the divergence 
date from closely related genetic groups and retracing 
routes of introduction or invasion is essential for devel-
oping a knowledge-based disease management response. 
For instance, the demonstration that the two domi-
nant groups of Xylella fastidiosa in southeastern France, 
including Corsica, diverged from their American relatives 
about 50 and 30 years ago and established in southeastern 
France before being introduced in Corsica (Dupas et  al. 
2023) suggests that the current eradication strategy in 
mainland France has a very low chance of success.

Risk of establishment and adaptive potential
Genetic polymorphism data obtained from the whole 
genomes of a sample of recently captured individuals of 
a given pest species can enable two types of inference, 
provided there is a reference database containing simi-
lar data from a large number of populations sampled in 
the native and invasive range of that pest. First, it is pos-
sible to determine the most likely genetic origin of these 
individuals, which corresponds to the most likely source 
population(s) in the database (see “Origin, spread and 
arrival of pests and Monitoring the evolution of emerging 

pest populations” sections). The risk of establishment and 
spread can be considered particularly high if the captured 
individuals belong to an “invasive bridgehead” population 
(i.e., a particular invasive population that acts as a source 
for many other large-scale invasions in distant areas; 
Estoup and Guillemaud 2010). Second, one can estimate 
the expected fitness of the captured individuals relative to 
the sampled region features, which is a key component of 
the risk of establishment and spread of the sampled prop-
agule in the area where it is captured (see “Adaptive crite-
rion” section). Indeed, the difference between the actual 
genetic composition and the optimal genetic composi-
tion in the new environment, a measure called genomic 
offset, can be used to assess the adaptive potential of an 
emerging population in a new environment (Bay et  al. 
2018; Láruson et al. 2022; Rhoné et al. 2020).

Preparedness for the monitoring of future genotypes of con‑
cern
Experimental evolution (EE), either in the laboratory or 
in mesocosms, using selection pressures imposed by the 
experimenter (biocides, plant immunity, abiotic stresses, 
etc.) could be another approach for defining in advance 
which variants are of concern. EE could be representa-
tive of a real-world emergence, as shown for viruses 
(Hajimorad et al. 2011) or nematodes (Castagnone-Ser-
eno et al. 1994) overcoming plant resistance factors, or 
for wheat blast resistance to a fungicide (Latorre et  al. 
2023). However, EE often lacks exhaustiveness and rep-
resentativeness. The phenomena to target could include 
resistance-breaking, resistance to plant protection prod-
ucts (PPPs), resistance to physical stresses or increased 
persistence in the environment, host jump risks, pheno-
typic reversion of attenuated cross-protection agents, 
etc. Specific diagnostic tools could rely on phenotyping 
(usually costly and labor intensive and almost impos-
sible to implement on a very large scale) or genotyping 
(increasingly affordable given the development of high 
throughput sequencing). However, genetic-based diag-
nostic tools may be hampered by uncertainty in the 
phenotype-to-genotype mapping or by the diversity of 
genetic events (mutations, recombination, hybridiza-
tion) to target. For example, resistance-breaking pest 
genotypes can show a tremendous diversity (Daverdin 
et  al. 2012) of structural variations (mutations, dele-
tions, insertions, inversion, translocation, duplication), 
which may require resorting to a phenotypic diagnostic.

Monitoring resistance to plant protection products
Pest genotypes that are resistant to PPPs are a major con-
cern, because PPPs exert strong selective pressures on 
pests, which thus generally evolve resistance to PPPs. In 
addition, the current decrease in the diversity of modes 
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of action of the available chemical substances (at least in 
Europe; Marchand 2023) will likely lead to overusing the 
remaining ones and thus increasing the selective pres-
sure and the associated probability of pest resistance. 
When the genetic determinants underlying resistance 
are known and simple (which is often the case of target-
site resistance mechanisms), high throughput molecular 
detection methods can be developed for surveillance in 
the field. However, resistance to some synthetic PPPs has 
complex genetic bases (e.g., non-target site resistance, 
behavioral resistance) and their study requires biotests 
or challenging field monitoring techniques. This issue is 
more acute for biocontrol agents, against which pests can 
also evolve resistance (Bardin et al. 2015; Leftwich et al. 
2016; Tomasetto et  al. 2017). The development of fast 
and accurate methods for monitoring such resistances 
requires more knowledge about the genetic architecture 
and evolutionary potential of the traits involved (Green 
et al. 2020). An additional challenge for the surveillance 
of resistance is the huge diversity of resistances that may 
evolve. This diversity originates from the combination of 
the diversity of PPPs causing selective pressures and of 
the number of plant pest species with their genetic pecu-
liarities. It is therefore necessary to prioritize resistance 
surveillance based on measurable criteria such as the 
level of selective pressure, the ability of pests to adapt, 
and the economic impact on the crop.

Building cooperative surveillance systems
Here we emphasize the need for inclusive and collec-
tive approaches as well as timely and cohesive informa-
tion flow between stakeholders with the goal of targeting 
optimal surveillance of pest emergence and preventing 
breakdown of cooperation and misalignment of effort. 
Developing such cooperative systems should allow 
increasingly decentralized and data-intensive monitor-
ing of invasive organisms that could benefit from a multi-
tude of opportunities, in particular low-tech solutions and 
frugal innovation as well as sources of data not initially 
dedicated to surveillance purposes, which may prove to 
be advantageous in a cost–benefit balance. Seizing these 
opportunities, however, requires (i) bringing together dif-
ferent disciplines supported by research infrastructures 
(Cardon and Barbier 2017); (ii) organizational prerequi-
sites including a polycentric system of governance and 
adaptive capabilities for the surveillance of emergence 
risks and biosecurity issues (Cook et  al. 2010), and (iii) 
technical resources such as versatile integration, interpo-
lation and extrapolation methods to cope with heteroge-
neous data.

Plant health as a commons
While crop production relies on many actions under-
taken by individuals at the farm scale, surveillance and 
pest control need to be handled at larger scales (Regev 
et al. 1976). Surveillance strategies limited to administra-
tive boundaries result in suboptimal pest control (Radici 
et al. 2023; Thompson et al. 2016), highlighting the need 
for decision-making at broader socio-ecological scales. 
Therefore, pest surveillance is a collective action that 
implies the coordination of stakeholders (farmers, coop-
eratives, plant health companies, extension services, 
etc.) and is often the subject of social dilemmas (Baga-
vathiannan et  al. 2019). A large international survey of 
250 pest surveillance systems led to the identification of 
three types of systems with different assets (R4P_network 
2021): (i) private systems, which exhibit superior funding 
capabilities and operate across a majority of agricultural 
regions; (ii) academic systems, which focus on a limited 
range of pests and pathogens, but are proficient at detect-
ing emergences and largely benefit from scientific knowl-
edge and analytical capacity; (iii) governmental systems, 
which favor information dissemination and encompass a 
diverse range of actors involved in pest surveillance. The 
survey highlighted that even if a surveillance system can 
be improved by combining the complementarities of pri-
vate, scientific and governmental actors, a comprehensive 
collaboration among them (and the associated benefits on 
surveillance effectiveness) is rare. Every actor has capa-
bilities, resources and information that can contribute to 
improving plant health surveillance. Efficient and resilient 
surveillance requires every actor to share their piece of 
the puzzle and to contribute to the social infrastructure 
that produces information about pests and plant health. 
From this point of view, plant health surveillance is indeed 
a “commons” (Ostrom 2015) that requires “commoning” 
(Euler 2018) among different actors and territories.

Further enhancement of pest surveillance systems 
requires: (i) strong participation of stakeholders and 
large-scale coordination, and (ii) organizational inno-
vations adapted to the ecology of pests and based on 
shared agency and the capabilities of the actors. This dif-
fers from structural compartmentalization induced by 
the Taylorian division (Kanigel 2005) of agri-production 
activities and administrative boundaries of agency. Thus, 
we need to develop pest surveillance as a commons 
(Ostrom 2015). Firstly, pest surveillance should not solely 
be the concern of public authorities, academics, or plant 
health companies. To this end, raising public awareness 
(see Text box 1.2) is crucial to encourage broader stake-
holder participation (Brown et  al. 2020). Secondly, the 
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reconfigured surveillance systems should be inclusive, 
facilitate surveillance tasks at the individual level, and 
promote collective actions. The following paragraphs 
present perspectives in these directions.

Information dissemination for inclusive surveillance
The impacts of emerging pests can be limited if timely 
information is available to the relevant stakeholders and 
if these stakeholders are organized into relevant networks 
for pest surveillance and control. This not only involves 
the top-down dissemination of information from central 
actors and public administration but also the upstream 
flow of information from farmers, value-chain actors, 
and intermediaries, who are directly connected to fields, 
greenhouses, farm environments, natural and urban 
areas (Sherman et  al. 2019). The effectiveness of infor-
mation systems for pest surveillance and control relies 
on the cohesion among these actors, the equitable distri-
bution of information about the existence of threats and 
the severity of their emergence, the relevance of indica-
tors communicated to the different actors (considering 
their roles, responsibilities and analytical capacities), and 
the availability of means and tools for surveillance and 
control. Information dissemination is crucial because 
poorly-informed actors struggle to make decisions and 
to promptly respond to critical situations. Accuracy of 
actionable knowledge is also essential to promote collec-
tive action and avoid potential breakdown of cooperation. 
A fragmented distribution of information leads to asym-
metries, which erode trust and can result in non-cooper-
ative actions (Dasgupta 1988). However, it is important 
to consider that the circulation of information depends 
on knowledgeable actors who operate within their pro-
fessional jurisdictions, commitments, strategies, and 
privacy. Consequently, differences in the perception and 
utilization of information for setting up measures or trig-
gering actions may lead to informational feedback (Mory 
1992) that may challenge the consistency of the informa-
tion system over time. Such differences can obscure the 
accountability of pest emergence, create disparities in the 
assessment of priorities for plant health, and even result 
in misalignment in mobilization efforts. The surveillance 
of emergence is thus an excellent context in which to 
study the role of information flow and informational feed-
back in the (sub)optimal state of surveillance. Such studies 
may be carried out in the framework of empirical research 
grounded on collection and analysis of data character-
izing the socio-economic sector of interest (Glavee-Geo 
et al. 2022) or in the framework of companion modeling 
and serious games (Étienne 2013; Jouan et al. 2021).

Transition to decentralized and data‑intensive monitoring
The present technological and societal context provides 
the opportunity to build more collaborative and ambitious 
surveillance systems. We can indeed leverage in this aim 
recent developments in high-throughput sequencing as 
well as computer vision for automated detection and clas-
sification (see “AI-enhanced molecular or image-based 
diagnostics” section), predictive models for pest spread, 
and the permeation of environmental concerns through-
out society (Chai et al. 2021; Cordier et al. 2021; Ryan et al. 
2018; Viboud et  al. 2018). Surveillance of (potentially) 
emerging organisms is generally pest-specific, affected by 
delays between sampling and data analysis, and limited 
in terms of monitored sites (except in exceptional cases, 
such as Xylella fastidiosa in Europe). However, e-DNA is 
widely used by researchers for biodiversity assessments 
without a focus on pests. Moreover, participatory obser-
vatories (possibly exploiting smartphone geolocation and 
camera) are proliferating, for biodiversity surveys but also 
for early detection and monitoring of pests (Epanchin-
Niell et  al. 2021; Hester and Cacho 2017; Redford et  al. 
2023). These trends and the easy-to-use diagnostic tools 
and detection approaches presented in “Surveying for 
pests using broad-spectrum tools and Surveying the usual 
suspects from new perspectives” sections could be used 
to develop decentralized and data-intensive monitoring of 
invasive organisms integrating the contribution of a wide 
variety of stakeholders. This perspective will require (i) 
truly collaborative surveillance systems with closer links 
and knowledge transfer between communities of stake-
holders, (ii) some numeric solutions for importing, anno-
tating and storing data, and the ability to share and merge 
disparate data, (iii) some modeling and analysis tools (tak-
ing into account different notification rates for different 
pests), the implementation of these tools in reliable auto-
mated pipelines to process and analyze data in real time, 
and (iv) cost–benefit analyses to determine which compo-
nents of surveillance strategies are most relevant (Caley 
et al. 2020).

Controlled‑cost surveillance approaches
Low-tech solutions and frugal innovation, which refer to 
affordable, easy-to-use, sustainable methods or tools for 
monitoring the spread of pathogens, were first formalized 
for the management of human diseases (Miesler et  al. 
2020). They can be used in resource-limited situations 
where advanced technology and data collection systems 
may not be feasible, and are hence especially inclusive and 
prone to be adopted in large stakeholder communities. 
They can be envisioned as human-centered alternatives 
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to the common practice of promoting cutting-edge and 
expensive technologies (Sarkar and Mateus 2022). Nev-
ertheless, low-tech solutions can be deftly combined with 
modern technologies, such as mobile apps, remote sens-
ing and AI to provide more accurate and timely informa-
tion on the emergence of plant diseases or vectors. Such 
tools and methods include well-designed pest recogni-
tion cards, easy-to-use trapping systems, simple kits for 
pathogen detection in fields (Donoso and Valenzuela 
2018), which can all be used by farmers, agricultural 
groups, advisors or distributors. Sentinel plants surveyed 
by botanical gardens or repositories (see “Sentinel plants” 
section) or the use of dogs for detecting specific diseases 
(see “Diagnostics with dogs” section) can also be con-
sidered as low-tech opportunities. They can be linked to 
structured initiatives to promote collective monitoring of 
pests and potential reservoirs, or to build local agricul-
tural initiatives such as sharing agricultural equipment, 
farmers’ workshops or FabLabs to facilitate the trans-
fer of skills and knowledge (Angeli Aguiton et al. 2022). 
Professional training combined with efficient and simple 
reporting systems are crucial for the success of such set-
tings that should be strategically deployed in risk areas 
or entry points of pests. Irrespective of the surveillance 
approach envisaged, the spatial optimization of surveil-
lance locations can be developed to minimize either the 
expected cost of mitigating outbreaks or the expected 
time to first detection, taking into account the constraint 
of surveillance costs (Yemshanov et al. 2019).

Alternative surveillance approaches based on data mines
Standard surveillance systems for emerging pests con-
ducted by governmental organizations and agricultural 
sectors can be complemented by alternative approaches. 
This can allow for increased observation effort and 
coverage at lower costs that are shared or even sup-
ported by other socioeconomic sectors. These alterna-
tive approaches reviewed by Ristaino et  al. (2021) can, 
for example, rely on scientific observations (Hily et  al. 
2020), citizen science data, and more generally, citizen-
generated data through crowdsourcing (Brown et al. 2020; 
Streito et al. 2023), information from scientific literature, 
media, social networks, governmental and non-govern-
mental organizations (European_Food_Safety_Authority 
et al. 2021), imagery from virtual navigation services ena-
bling visualization of surroundings along transportation 
routes (e.g., Google Street View; Rousselet et  al. 2013), 
signals transmitted by ground-based radars (Lukach et al. 
2022), and satellite data (Oerke 2020). Each type of data 
can be independently utilized to provide complementary 
information to relevant stakeholders. However, the next 
step is to integrate these data within a coherent statistical 

framework that appropriately weights each type of data. 
This requires, first and foremost, the organizational and 
technical prerequisites discussed in “Facilitating the inte-
gration of data from multiple sources” section. It then 
necessitates analytical tools to establish the link between 
each type of observation and the signal of interest, meas-
ure the information content they provide, assess associ-
ated uncertainties and biases, determine their spatial and 
temporal coverage (which may require downscaling or 
upscaling), unravel dependencies between observations, 
and correct the weighting of observations that provide 
partially redundant information. Achieving this inte-
gration while assessing the cost of each type of observa-
tion can help in streamlining the alternative surveillance 
approaches that are employed and, potentially, reducing 
sampling effort in standard systems or enabling more 
efficient deployment of such effort across time and space 
(i.e., developing risk-based surveillance using alternative 
approaches). However, this requires some form of sustain-
ability for alternative approaches: long-term accessibil-
ity, consistency in the type of information provided, and 
timely alerts if these features change.

Facilitating the integration of data from multiple sources
The proposals mentioned in “Alternative surveillance 
approaches based on data mines” section involve inte-
grating data ranging from those about the pests them-
selves to the biotic and abiotic characteristics of the 
environment. Such data are collected at various spatio-
temporal scales and for different purposes. As such, they 
are not only heterogeneous in their nature but also in 
their quantity, representativeness, precision and reliabil-
ity for surveillance. With the rise of advanced technolo-
gies in diverse areas such as genomics, remote sensors, 
robotics and AI (Garrett et  al. 2022), plant health sur-
veillance is now also challenged –like public health– by 
a lack of metadata, i.e., the structured information about 
the data such as spatial, temporal and taxonomic cover-
age, methods and protocols (Rasmussen and Goodman 
2019). Metadata are indeed critical to determine the 
relevance of the data, to define how they can be com-
bined for analysis, and to enhance interoperability using 
semantic vocabularies as defined in structured metadata 
languages for data indexation (Jonquet et  al. 2018). In 
the absence of data standardization (see https:// rdamsc. 
bath. ac. uk for examples of standards), automatic tools 
for alignment of data and semantic references contrib-
ute to unifying the representation of heterogeneous data, 
for example by entity-linking methods and alignment 
standards (e.g., SSSOM A Simple Standard for Sharing 
Ontological Mappings; Matentzoglu et al. 2022). Sharing 
and opening surveillance systems (from the cooperative 

https://rdamsc.bath.ac.uk
https://rdamsc.bath.ac.uk
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perspective suggested above) would require open-science 
databases as a commons (Ostrom 2015), dedicated IT 
infrastructure and curators to facilitate data integration, 
exploration and queries. Such open platforms will need 
to address issues related to data security and privacy, and 
to reach agreements between various partners who may 
have different objectives (Weisberg et al. 2021). Some of 
the challenges underlying cooperative systems could be 
reduced by identifying common monitoring objectives. 
Common targets can be environmental ensembles, such 
as environmental networks connected by surface water 
or air (Aguayo et  al. 2021), or areas forming coherent 
agro-ecological and socio-economic units, where the 
diverse actors share inherently interdependent concerns 
(e.g., biodiversity, urbanization, environmental resources, 
agricultural production, local industry and employment).

Interpolation and extrapolation of information
Even if we tend toward decentralized and data-intensive 
monitoring, data generally covers time and space in a 
very patchy and non-uniform manner. Moreover, the 
monitored points or areas are usually representative of 
only a subset of possible environmental conditions and 
human interventions. Interpolating (and even extrapo-
lating) the signal of interest (e.g., disease level, regulation 
score, probability of exceeding a threshold) in time and 
space based on raw observations is crucial for providing 
information tailored to each stakeholder, whether they 
require localized information (e.g., concerning a farm 
distant from surveillance points) or aggregated informa-
tion (e.g., on the health status of a territory). Approaches 
such as smoothing, kriging, autoregressive modeling, and 
machine learning (Martinetti and Soubeyrand 2019; Ver 
Hoef et  al. 2018), which rely on spatiotemporal proxim-
ity and (possibly) on covariates associated with observa-
tions, enable this interpolation while providing measures 
of uncertainty. The spatiotemporal distribution of uncer-
tainty can moreover be used to adapt sampling with the 
aim of optimally reducing areas of high uncertainty (Brus 
2019). One of the current challenges is to simultaneously 
(i) identify the variables with high predictive power that 
should be prioritized among the large number of varia-
bles characterizing environmental conditions and human 
interventions, (ii) incorporate a dynamic or even mecha-
nistic component into the interpolation process, and (iii) 
explicitly model the relationship between the signal of 
interest and the observations, which may have different 
natures if they are obtained from different observation 
means. This perspective could rely on the hybridization 
of the mechanistic-statistical approach (Papaïx et al. 2022) 
and machine learning (Bi et al. 2019). More generally, AI 
coupled with mechanistic approaches has the benefit of 
identifying unsuspected relationships between different 

biological and environmental phenomena, leading to 
more realistic representations of biological systems. This 
is one intended application for AI in understanding ani-
mal health (Ezanno et  al. 2021), which should extend to 
plant health.

Discussion
Information is the key to (plant) health management
Plant health surveillance systems are the road maps for 
the operators who assure health protection (Langmuir 
1971). By dissecting the relationship between surveil-
lance and health protection, an essential and generic link 
arises: “information”. The production, dissemination, uti-
lization and asymmetries of information are central top-
ics in economics (Stiglitz 2000), including in economics 
of the agricultural sector. When provided to stakehold-
ers, information generated from surveillance contributes 
to decision-making about possible monitoring measures 
for protecting health, as well as other actions including 
planning and evaluation of health programs and formu-
lation of research hypotheses (German et  al. 2001). The 
term “information” is not simply reciprocally associated 
with surveillance. As previously pointed out (Hoinville 
et  al. 2013), some activities that do not directly corre-
spond to surveillance actions also provide useful infor-
mation. For example, an intervention for controlling a 
disease outbreak provides information about the likely 
local reduction of disease inoculum. Research and risk 
assessment activities, which are largely the subject of this 
article, are additional means of generating information 
that could improve stakeholder awareness, preparedness 
and resilience to phytosanitary issues (see Text box 1.1). 
In order to achieve optimal efficiency, all the activities 
that provide information to stakeholders should ideally 
be combined to lead to a level of risk reduction that max-
imizes social welfare (Hoinville et al. 2013). Paradoxically, 
this plethora of information from multiple sources could 
lead key actors to a state of cognitive hypervigilance. 
Hypervigilance is a state of heightened awareness and 
sensitivity to potential threats from the surroundings and 
can lead to high levels of anxiety (Richards et  al. 2014). 
From an evolutionary point of view, it is thought to be 
the result of a bias in the processing of information aimed 
at improving the chances of survival (Richards et  al. 
2014). In plant health surveillance, hypervigilance can be 
a source of anxiety for key actors, leading to unnecessar-
ily broad and stringent regulations that disorganize and 
overwhelm the surveillance and response system.

Improving information effectiveness
Information is useful, but its effectiveness (qualitative and 
quantitative usefulness, and economic benefit) also mat-
ters. Surveillance efforts can multiply along the many 
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dimensions presented in this article, and integrate the 
produced data to improve the level and quality of infor-
mation while reducing the biases inherent to any single 
surveillance approach. However, the surveillance system 
as a whole has to be economically and technically sustain-
able. Its cost has to be balanced with costs and benefits 
of crop production, control measures and environmen-
tal externalities. Moreover, the sources of data as well as 
the human resources and tools for collecting, analyzing, 
interpreting and disseminating data must be available and 
functional over medium to long terms. Ideally, methods/
tools/technologies contributing to the surveillance sys-
tem have to be timely, representative of the area and the 
period, accurate, repeatable and cost-effective. These 
criteria can be the basis on which new approaches must 
be assessed before they are included in any plant health 
surveillance system. It is worth stressing, however, that 
what does not seem feasible one day may be feasible later 
(with technical innovation, cost reduction, new require-
ments, etc.) and hence deserves to be explored in research 
programs. Moreover, some approaches might not meet 
the criteria mentioned above when they are considered 
alone but could be complementary and hence valuable in 
a multimodal surveillance system. For example, one could 
envisage to couple a low-accuracy but cheap participatory 
monitoring approach with high spatiotemporal-coverage, 
and a high-accuracy but expensive diagnostic tool that 
can only be applied at a few locations and times, thanks 
to a statistical method that leverages data from the par-
ticipatory monitoring by calibrating them with diagnostic 
data. Therefore, when designing a multimodal surveil-
lance system, cost–benefit analyses (Hanley and Roberts 
2019) need to be carried out to identify the combina-
tion of surveillance approaches that will lead to effective 
information. Cost–benefit analyses, which might be 
implemented in the future in empirical pilot studies at 
territory scales, should not only be performed for com-
paring multimodal surveillance approaches, but also for 
assessing the added value of surveillance as a component 
contributing to preventive pest management, allowing 
the development of a more sustainable agriculture in gen-
eral and the reduction of pesticide use in particular (Cros 
et al. 2021; Fuller et al. 2020; Picard et al. 2019). Coopera-
tive surveillance approaches based on both opportunis-
tic data and stakeholder communities much larger than 
the farmer community is a way to reduce the burden of 
surveillance/prevention on the farmers and, hence, make 
it more acceptable the adoption of pest management 
practices with potentially reduced effects on the pests 
but significantly reduced negative impact on the envi-
ronment. Therefore, surveillance must be considered as 
a full-fledged component of agriculture and included in 
the calculation of costs, benefits and externalities of the 

agricultural system. We conjecture that this calculation, 
when considering the potential emergence of pests, may 
lead to a choice of surveillance approaches that (i) allow 
the detection of weak signals enabling early preventive or 
limited curative actions (see “Surveying for pests using 
broad-spectrum tools and Surveying the usual suspects 
from new perspectives” sections), and (ii) make it possi-
ble to characterize the conditions that avoid the need for 
curative action (see “Anticipating the emergence of pests” 
section); see Morales et  al. (2021) regarding preventive 
versus curative pest management. Finally, it is important 
to emphasize that the path from innovation to imple-
mentation also includes the challenges of integrating new 
surveillance technologies within the stringent regulatory 
frameworks of international trade.

Towards a better understanding of the factors involved 
in pest emergence
Beyond their primary objectives of better anticipating 
and monitoring pest (re-)emergence, the research direc-
tions outlined in this article and summarized in Suppl. 
Figure 2 can provide insights into (re-)emergence factors 
and their interactions. In turn, a better understanding of 
the role of the factors contributing to emergence is cru-
cial for the development of effective prevention and miti-
gation strategies (Corredor-Moreno and Saunders 2020). 
Further thinking could therefore focus on the relevance of 
the proposed research directions to elucidating and quan-
tifying the contributions of emergence drivers (Bebber 
2015; Corredor-Moreno and Saunders 2020; MacLeod 
et al. 2010). Here we propose a classification of pest emer-
gence factors into three main categories (Table  1): (i) 
natural and human-mediated dispersal (air, surface water, 
trade in its local and global dimensions, hitchhiking, etc.), 
(ii) genetic and ecological processes and changes in the 
biotic environment (genetic variability of pests, pest adap-
tation, pathogen spillover, plant selection, reservoir hosts 
and environments, introduction of new plant species, 
biological community features, biological vectors, auxilia-
ries, competition, symbioses, etc.), and (iii) changes in the 
abiotic and social environment (climate change, changes 
in agricultural practices, regulation, land-use and habitat 
continuity/fragmentation, etc.). Such a categorization can 
help to identify research gaps in the analysis of the factors 
of (re-)emergence, and the new avenues of research high-
lighted in this article that can contribute to filling these 
gaps.

Relevant scales for the anticipation and monitoring of pest 
outbreaks
Pest emergence is inherently a multiscale process —from 
brief local outbreaks to long-lasting pandemics— with 
local and global drivers. We point out that we have not 
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specified the relevant scales for the anticipation and mon-
itoring of pest outbreaks in this article. Determining the 
relevant spatial and temporal scales of surveillance data 
is still a major challenge (Glennon et  al. 2021). Models 
can be part of the solution to this challenge (Lloyd-Smith 
et al. 2015), particularly multiscale models (Picault et  al. 
2019). The international dimension of surveillance has 
long been recognized as a crucial aspect contributing to 
the management of transboundary pests (Domenech et al. 
2006). Several research directions outlined in this article 
contribute to this dimension, such as horizon scanning or 
epidemiological intelligence, exploiting new capabilities in 
artificial intelligence applied to texts (Morris et al. 2022), 
and the design of worldwide cooperative surveillance 
networks based on new descriptions of connectivity at a 
global scale (Radici et al. 2023). National and international 
organizations in charge of alert systems should be able 
to update their processes in a timely manner, taking into 
account such new trends with high potential and benefit-
ing from new technologies or new concepts (Kreuze et al. 
2023). Finally, a permanent interface between the research 
community and alert system organizations seems essen-
tial to promote the rapid integration of innovation into 
surveillance and, reciprocally, of surveillance data into 
research projects.

Putting plant health in the One Health context
At the interface of human, plant, animal and environ-
mental health, we face a wide spectrum of risks, further 
highlighting the need for a comprehensive and interdis-
ciplinary approach. These risks include food scarcity, 
environmental contamination, and pesticide toxicity. 
Damage to plant health can result in a loss of food pro-
duction, potentially leading to malnutrition or famine. 
Plant health issues can facilitate the transmission of 
general pathogens such as Salmonella enterica respon-
sible for enteric infections, or in acute or chronic poi-
soning of consumers by mycotoxins (ergot, fusariosis, 
etc.; Andrivon et  al. 2022; Brandl 2006). Pesticides in 
agriculture can affect both producers and consumers 
through residue exposure, having important health 
implications (Andrivon et  al. 2022). Furthermore, the 
interplay between plant pests and control measures 
affects ecosystems, disrupting ecological function-
ing. In response to these multifaceted risks, we advo-
cate a comprehensive One Health approach of plant 
health and its surveillance, with a clearer integration of 
human, animal, plant and environmental aspects. This 
widens the scope of plant health surveillance, shift-
ing to epidemiological indicators highlighting future 
risks rather than present dangers. This approach will 
facilitate the transformation of agricultural practices 
towards those that both maintain plant health and 

avoid or mitigate risk in human health, animal health 
and the environment, thereby promoting agroecol-
ogy and organic farming. To improve global health, we 
need to build bridges between monitoring systems for 
plant, animal and human health as well as for environ-
mental quality (Hulme 2020). This means developing 
information flows that are useful for decision-making 
and action (Soubeyrand et  al. 2020), and increasing 
cooperation in terms of structures, methods and shared 
data (epidemiological, molecular, etc.). Regarding the 
latter point, the ideal of unrestricted data sharing will 
be challenged by legitimate concerns and constraints 
related to intellectual property, cultural sensitivities, 
privacy, and potential economic impacts. While these 
obstacles need to be considered, we remain convinced 
that wider access to data adequately anonymized (as 
advocated for instance within the European Union) is 
essential to significantly improve global biosecurity 
efforts by enabling more effective and timely responses 
to emerging threats. In any case, open, interoperable 
and regularly updated catalogs of data from heteroge-
neous sources are needed to take account of the nec-
essarily heterogeneous nature of the data considered 
in such cooperation (Morris et  al. 2022). Considering 
plant health in an upgraded One Health approach will 
allow for a better understanding and management of 
plant health problems without the hegemony of one-
size-fits-all approaches.

Conclusion and perspectives: advocating Inte‑
grated Health Surveillance (IHS)
Plant health is the roughly visible result of processes in a 
complex system (Ladyman et  al. 2013) with boundaries 
extending much further than conventionally thought. 
Plant health is indeed entangled with numerous biotic 
and abiotic processes, among which some are well known 
(those classically included in the famous disease triangle 
linking the host, the pest and the environment, includ-
ing human actions) and others that need to be disentan-
gled or decrypted (typically, some processes related to 
One Health or involving large trophic communities and 
regulation networks at all scales). The research directions 
envisioned in this article are options that can contribute 
to enhanced surveillance and that can unravel from differ-
ent angles the complex system driving plant health. How-
ever, how many and which options should be adopted in 
which situation and how they should be combined remain 
open questions. A major challenging perspective in that 
respect is to identify the “game changer approaches” in 
terms of information efficiency, i.e., the combinations of 
approaches that can significantly outperform or funda-
mentally change current surveillance systems for single or 
multiple, specified or unknown pest(s), while complying 
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with the stringent regulatory frameworks governing 
international trade. Addressing this challenge is beyond 
the scope of this article. We can state, however, that it at 
least requires specifying criteria that measure surveillance 
efficiency and performing the cost–benefit analyses dis-
cussed above (see “Improving information effectiveness” 
section). In addition, fully addressing this challenge, in the 
present era of global change, necessitates considering not 
only incremental but also radical innovation (Dosi 1982). 
The risk and uncertainty associated with radical innova-
tion may require governmental intervention, especially 
in the presence of generally non-commodity aspects such 
as environmental health in agro-ecological systems (Dosi 
1982), but also “dynamic capabilities” of economic actors 
to transform their organization towards agility (Teece 
et  al. 2016) as pointed out in “Relevant scales for the 
anticipation and monitoring of pest outbreaks” section. 
By (i) cultivating this adaptive positioning with respect 
to innovation and research, (ii) favoring anticipation in 
pest emergence, (iii) considering both broad-spectrum 
and specific surveillance approaches, (iv) assessing these 
approaches within a cost–benefit framework, (v) pro-
moting fully collaborative surveillance systems, and (vi) 
setting plant health in the One Health context from an 
interdisciplinary perspective, we advocate for Integrated 
Health Surveillance (IHS), where the health of plants, the 
environment, animals and humans are considered in an 
inclusive and collaborative manner that integrates a mul-
titude of actors and technological approaches.
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