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Abstract 

Background:  Most studies on the environmental impacts of agriculture have attempted to measure environmental 
impacts but have not assessed the ability of the sector to reduce or mitigate such impacts. Only a few studies have 
examined greenhouse gas emissions from the sector. This paper assesses the ability of states in the U.S. to reduce agri‑
cultural emissions of methane and nitrous oxide, two major greenhouse gases (GHGs) with important global warming 
potential.

Methods:  The analysis evaluates Färe’s PAC (pollution abatement cost) for each state and year, a measure of the 
potential opportunity costs of subjecting the sector to GHG emissions regulation. We use both hyperbolic and direc‑
tional distance functions to specify agricultural technology with good and bad outputs.

Results and conclusions:  We find that such regulations might reduce output by an average of about 2%, although 
the results for individual states vary quite widely.
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Background
The Intergovernmental Panel on Climate Change (IPCC 
2014) estimated that as of 2010, agriculture accounted for 
24% global anthropogenic greenhouse gas (GHG) emis-
sions, versus 21% from industry and 14% from trans-
portation. In the U.S. in 2013, agriculture accounted for 
approximately 9% of GHG emissions. Since 1990, agri-
cultural emissions had increased by approximately 13%, 
the main driver being the growth in combined methane 
(17.5%) and nitrous oxide emissions (10.4%).1 It is worth 
noting that the global warming potential of methane and 

nitrous oxide are respectively 28–36 and 265–298 times 
that of carbon dioxide. Methane has, on average, a 10 year 
and nitrous oxide a 100 year lifespan in the atmosphere.2 
Nitrous oxide is also one of the leading ozone depleting 
substances. These environmental impacts have made 
the agricultural sector a subject of several federal and 
state regulatory efforts in the U.S.: the Clean Air Act of 
1970, the Global Warming Reduction Act of 2006, the 
Safe Climate Act of 2006, the Climate Stewardship and 
Innovation Act of 2005, the Clean Power Plan of 2015, 
and the Regional Greenhouse Gas Initiatives, among oth-
ers. The 2010 EPA proposals, Prevention of Significant 
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tials. Accessed July 19, 2021.
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Deterioration and Title V Greenhouse Gas Tailoring 
Rule, prompted stationary sources, agricultural produc-
tion units included, to obtain permits if their actual emis-
sions or potential to emit go beyond certain established 
thresholds.3 A recent proposal that reflects these con-
cerns is The Energy and Innovation and Carbon Dividend 
Act introduced in the U.S. Congress in 2018 and reintro-
duced in 2019 and 2021 that proposes a carbon fee at the 
source and dividends redistributed across the population. 
The unique perspective of the present research is relevant 
to these proposals, because we provide estimate of the 
opportunity cost of compliance with potential regulation.

Methods
This study examines the efficiency of individual U.S. 
states with respect to their production of livestock, crops 
and greenhouse gases (GHGs). To measure environmen-
tal performance accounting for undesirable outputs in 
a production process, a number of economic tools have 
been employed. Both non-parametric data envelopment 
analysis (DEA), Reinhard (1999), and stochastic as well 
as deterministic parametric distance functions (Rezek 
and Perrin 2004; Serra et  al. 2011)  have been used to 
represent feasible technologies and thereby assess the 
performance of decision-making units (DMUs). We use 
non-parametric data envelopment techniques (hyper-
bolic and directional output distance functions) to iden-
tify the feasible technology and measure the potential 
decrease in GHG emissions of the individual states. We 
postulate a state-level agricultural production technol-
ogy, T, that transforms inputs x ∈ R

N
+ into desirable out-

puts y ∈ R
M
+  and weakly disposable undesirable outputs 

b ∈ R
J
+ such that T =

{(

x, y, b
)

: x can produce
(

y, b
)}

. 
Alternatively, the technology can be characterized by the 
compact output set as Pw(x) =

{(

y, b
)

:
(

x, y, b
)

∈ T
}

 , 
satisfying the axioms of null jointness in desirable and 
undesirable outputs, weak disposability in undesirable 
outputs and strong disposability in desirable outputs.

Hyperbolic efficiency
The enhanced hyperbolic productive efficiency meas-
ure used here follows Färe et  al. (1989). It measures for 
each individual decision-making unit (DMU—states in 
our case) the potential for equi-proportional expansion 
of desirable outputs and contraction of undesirable out-
puts as well as inputs, given the feasible production tech-
nology that has been revealed by the set of 48 states. In 

Fig. 1 the vertices A and B represent combinations of bad 
and good output achieved by two DMUs on the frontier, 
while (bk,yk) represents that for DMU k, whose efficiency 
we examine in this figure. Assuming weak disposability 
of environmentally undesirable outputs, the hyperbolic 
output efficiency measure for state k, representing the 
potential for simultaneous and equi-proportional expan-
sion in desirable outputs and contraction in undesirable 
outputs and inputs is defined as follows:

If instead of weak disposability in undesirable outputs 
we were to impose strong disposability (i.e., it does not 
cost anything to dispose of these outputs), the measure 
would be

Figure 1 illustrates these two measures for DMU k, where 
the feasible weakly disposable technology is represented by 
the convex solid projection curve shown, and the feasible 
strongly disposable technology is illustrated by the continu-
ing dashed projection to the level of maximum producible 
output y*. When b is strongly disposable, the DMU can pro-
duce at the maximum y* whatever level of b, then simply dis-
pose of all the b, providing an effective output combination 
on the vertical axis at λsyk = y*. A DMU is efficient if it is on 
the frontier, and in this case, HE 

(

xk , yk , bk
)

= 1. It is ineffi-
cient when HE

(

xk , yk , bk
)

> 1 . In this study we use Data 
Envelopment Analysis (DEA) to calculate these measures. 
The programming algorithms are shown in Appendix 1.

PAC—a measure of pollution abatement cost
Färe et  al. (1989) proposed, in the context of hyperbolic 
efficiency, that the ratio of the efficiency measures under 

(1)HEw
(

xk , yk , bk
)

= Max{(� : �yk , �−1b, �−1xk) ∈ Pw(x)}

(2)HEs
(

xk , yk , bk
)

= Max{(� : �yk , �−1b, �−1xk) ∈ Ps(x)}

Fig. 1  Hyperbolic efficiency measure

3  At least 75,000 tons per year (tpy) of carbon dioxide equivalent (CO2e) 
and an increase in emissions of at least one non-GHG pollutant as of Janu-
ary 2, 2011 on a first step. And at least 100,000 tpy CO2e as of July 11, 2011 
as second step. Source emissions below 50,000 tpy CO2e, and no modifica-
tion resulting in net GHG increases of less than 50,000 tpy CO2e, would be 
subject to PSD or title V permitting as of April 30, 2016.
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strong disposability (λs) and weak disposability (λw) is a 
“measure of the regulatory impact, conceived in terms 
of reduced productivity due to a forced departure from 
strong disposability of undesirable outputs.” or of the cost 
to that DMU of being unable to freely dispose of the bad. 
Färe et al. (2007) subsequently named this ratio PAC (pol-
lution abatement cost), and it has been used in a number 
of applications (Färe et al. 2016a, b; Liu and Sumaila 2010).

The logic of PAC as a measure of pollution abatement 
cost is as follows. Consider the projection of DMU k 
from (bk, yk) to the weakly disposable technology frontier 
at (bk/λw = b1, λwyk = y1), as indicated in Fig. 1. If b were 
freely disposable, the now efficient DMU could increase 
y to the point of maximum desirable output, y*, then dis-
pose of all the b. But y* is equal to λsyk, the point on the 
frontier to which we have projected the DMU using HEs 
under strong disposability. The ratio λs /λw is thus equal 
to the ratio y*/y1, the ratio of the amount of good output 
the DMU could produce under free disposability, relative 
to the good output at the efficient point on the weakly 
disposable frontier to which it is hyperbolically projected.

Our reservation with respect to this interpretation is that it 
is measured from the point on the weak disposability frontier 
to which we project the state. The projection path in general 
is purely arbitrary—it could be projected along any number 
of other paths, as we suggest in the next section, rather than 
a hyperbolic projection. There is no particular reason for us 
to believe that if the DMU were to become technically effi-
cient, it would perform at the projected point, and it is highly 
unlikely that any conceivable regulatory policy would cause 
the agricultural DMU to move to that particular projection 
point. Still, there is intuitive appeal and precedent for inter-
preting the ratio as potential regulatory impact such that a 
binding regulation on DMU k results in �s/�w > 1 and in 
�
s/�w = 1 in the absence of regulation (or in production of 

y1 versus the y* that would be produced in the absence of 
regulation, where y*/y1 = �s/�w ). Rather than to follow Färe 
by defining PAC as the ratio �s/�w , we define PAC as the dif-
ference, �s − �

w , which we then multiply by the dollar-val-
ued yk to measure the dollar value of the PAC. This allows 
adjustment for the size of the agricultural production activity 
in each state. Accordingly, a measure of the cost of regula-
tion, or the cost of being unable to dispose of the bad output 
freely, can be approximated by Eq. (3). We interpret this as 
the value of the hyperbolic pollution abatement cost (PAC) 
in this study:

(3)
Value of PACk

HE = yk ∗
[

HEs
(

yk , bk , xk
)

−HEw
(

xk , yk , bk
)]

A directional output efficiency measure
Generalization of the output distance function has led to 
consideration of the directional output distance function 
to measure efficiency, which is suitable and convenient 
for gauging performance of a production process with 
both desirable and undesirable outputs. Performance 
measures associated with the directional distance func-
tion include a number of nonparametric and nonsto-
chastic indexes (Chambers et al. 1996; Oh and Heshmati 
2011) as well as parametric, deterministic and stochastic, 
approaches (Silva et al. 2019; Badau et al. 2016; Summary 
and Weber 2012; Färe et  al 2007). In this study we use 
Data Envelopment Analysis (DEA) to obtain the direc-
tional output distance function to assess efficiency in 
the presence of GHG emissions conceptualized as a bad 
output.

The directional output distance function also measures 
efficiency by projecting individual DMU observations to 
the technology frontier, but along a chosen ray from its 
observed point rather than along a hyperbolic path, as 
illustrated in Fig.  2 and described next.4 This efficiency 
measure is defined as the maximum feasible multiple, β , 
of additional output units and subtraction of input units 
given a directional vector g =

(

gy , gx

)

 , which identifies 
the units of y and x, respectively:

which is referred to as a directional distance function.5 In 
the context of a joint production process of undesirable 
and desirable outputs, an environmental directional dis-
tance function ( �Dk

E) can be defined similarly as follows:

(4)

�Dk
(

yk , xk; gy, gx

)

= Sup
[

β :
(

yk + βgy , x
k − βgx

)

∈ P(x)
]

PW(x)

y

b

P
S
(x)

(bk, yk)

0

\\yk+βs*gy = y*

yk+βw*gy = y' (b', y')

b' = bk +β w*gb

g(gb , gy)

A

B

D

C

Fig. 2  Directional distance function

4  Färe et al (2016a, b) shows that the directional distance function is a linear 
approximation to the hyperbolic distance function.
5  The directional distance function satisfies the translation property, homo-
geneity of degree -1 in 

(

gx , gy

)

 , monotonicity, and concavity.
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where g =
(

gy ,−gb,−gx

)

 is a vector determining the 
direction in which the desirable output is expanded and 
the inputs and undesirable outputs are contracted. The 
directional distance function also differs from the hyper-
bolic distance function by its additive, rather than multi-
plicative, scaling. �Dk

E

(

yk , bk , xk; gy , gb, gx

)

 as defined in 
Eq.  5 can be computed by solving the linear program-
ming problem in Appendix 1. A DMU is said efficient in 
the 

(

gx , gy , gb

)

 direction if it is on the boundary, i.e., 
exhibits a 

−→
D k

E

(

yk , bk , xk; gy , gb, gx

)

= 0. It is inefficient 
when �Dk

E

(

yk , bk , xk; gy , gb, gx

)

> 0 . As with the hyper-
bolic, the directional distance can be obtained for pro-
duction sets with strong disposability as follows:

where S indicates a strongly disposable production set.
The choice of the directional vector is somewhat arbi-

trary. If 
(

gx, gy, gb
)

 is set to (0, 1,−1) the directional dis-
tance function projects the observation by increasing 
good output by one unit and decreasing bad output by 
one unit while holding inputs constant. For consistency 
with the original Farrell efficiency measures and the 
Shephard distance functions, the observed input and 
output mix has been used as the directional vector.6 This 
output directional distance function is depicted in Fig. 2, 
where the directional vector  

(

gy,−gb
)

 shown in the left 
quadrant is added to the observed vector 

(

yk , bk
)

 so the 
k-th observation is projected along the assigned direction 
to point D =

(

y+ β∗gy, b− β∗gb
)

 on the boundary of the 
weakly-disposable output set, Pw(x).

Analogous to the case of the hyperbolic distance func-
tion, a measure of pollution abatement cost (PAC) for 
DMU k resulting from a directional distance function is 
computed as βs − βw with the value of the directional 
pollution abatement cost (PAC) as:

(5)

�Dk
E

(

yk , bk , xk; gy , gb, gx

)

= Sup
[

β :
(

yk + βgy , b
k − βgb, x

k − βgx

)

∈ P(x)
]

(6)

�DSk
E

(

yk , bk , xk; gy , gb, gx

)

= Sup
[

β :
(

yk + βgy , b
k − βgb, x

k − βgx

)

∈ PS(x)
]

(7)

Value of PACk
DDF = yk∗

[

( �DS
E

(

yk , bk , xk; gy , gb, gx

)

−�DW
E

(

yk , bk , xk; gy , gb, gx

)]

where S and W refer to directional distances with strong 
and weak disposability respectively.

Data
In this study we examine the potential cost to the state-
level agricultural sector in the U.S. of regulating meth-
ane and nitrous oxide emissions, using data from 1992 to 
2003.7 The agricultural outputs are multilateral indexes 
of crop production and livestock production (indexed to 
Alabama, 1996 equal to 1.0), while the agricultural inputs 
are similar multilateral indexes of capital, land, labor, 
energy, chemical, pesticides and fertilizers. Details and 
documentation on methods to compute these indexes 
can be found in the USDA ERS Agricultural Productivity 
website.8 We also used the implicit quantity of livestock 
and crop from the same source to determine a dollar 
value of a potential emissions regulation. The undesir-
able output from agriculture is from the Environmental 
Protection Agency (EPA), reported in their website.9. 
We converted the EPA estimates of methane and nitrous 
oxide emissions into CO2 equivalents and then indexed 
that quantity to Alabama 1996 = 1 for compatibility with 
the USDA ERS indexes of agricultural inputs and desir-
able outputs. Table 1 shows descriptive statistics for the 
data.

Results and discussion
In Table  2 we compare annual average values of PAC 
using hyperbolic projections versus directional distance 
function projections, along with the average values of 
efficiencies under strong versus weak disposability used 
to calculate these PACs. This table provides an estimate 
of the proportion of agricultural production that would 
potentially have to be sacrificed, by year, to reduce these 
gases, or the average opportunity cost of regulating 
these gases by year. Looking first at the average value 
(last line), we see that the average PAC is 0.020 using the 
hyperbolic projection versus 0.016 using the directional 
distance function projection. The average strong dispos-
ability and weak disposability scores under hyperbolic 
projection are 1.115 and 1.095, respectively. Referring to 
Fig.  1, this indicates that on average the long arc to the 

6  Alternatively, Zofio et al. (2010) propose the use of market prices as direc-
tional vector to measure economic inefficiency in terms of foregone profits.
7  The USDA ERS calculation of input and output indexes by states for the 
agricultural sector was discontinued in 2004.

8  See Ref. [15].
9  United States Environmental Protection Agency (US EPA), 2010. Inven-
tory of U.S. greenhouse gas emissions and sinks: 1990–2008. Washington 
D.C. https://​www3.​epa.​gov/​clima​techa​nge/​Downl​oads/​ghgem​issio​ns/​508_​
Compl​ete_​GHG_​1990_​2008.​pdf. Accessed on November 10, 2016. This url 
has been discontinued, but similar information can be obtained at https://​
cfpub.​epa.​gov/​ghgda​ta/​inven​torye​xplor​er/#​iagri​cultu​re/​entir​esect​or/​allgas/​
gas/​all.

https://www3.epa.gov/climatechange/Downloads/ghgemissions/508_Complete_GHG_1990_2008.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/508_Complete_GHG_1990_2008.pdf
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iagriculture/entiresector/allgas/gas/all
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iagriculture/entiresector/allgas/gas/all
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iagriculture/entiresector/allgas/gas/all
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dashed line represents an 11.5% increase in good output 
y and an 11.5% decrease in bad output b. The difference 
between these two, 1.115–1.095 = 0.020, suggests as we 

have argued above that a plausible average measure of 
PAC, the pollution abatement cost, is 2%. The averages of 
the two directional distance function measures are 0.099 
and 0.083, reflecting alternatively a 9.9% or 8.3% increase 
in y and reduction in b, with the difference of 0.099–
0.083 = 0.016 again interpreted as the average abatement 
cost. These results thus indicate that the average poten-
tial regulatory burden would be about 1.6–2.0% of the 
value of agricultural output.

The results indicate a strong increase in PACs from 
1992 to 1995 (from 0.9 to 3.7%), settling back to quite 
constant levels around 1.7% to 2.1% from 1996 to 2003. 
This pattern holds for both the hyperbolic and the direc-
tional distance function specifications of technology. The 
results translated into dollar values are shown in Table 3. 
The cumulative costs over the period are in the vicinity 
of $28–33 billion dollars (1996 dollars), and range from 
about $1 billion in 1992 to $4 billion in 1995.

Broken out by crops versus livestock in Table  4, we 
observe quite similar patterns through time for the live-
stock and crop sectors, reflecting the previously-men-
tioned increase from 1992 to 1995 before settling to more 
year-to-year stability afterward. The pollution abatement 
costs fluctuate more widely for livestock products than 
for crops.

Table 1  Data descriptive statistics: yearly state-level data on 
agricultural outputs and inputs for U.S. 48 States, 1990–2004

*All indexes with respect to Alabama in 1966, 1996 dollars

Source: ERS: https://​www.​ers.​usda.​gov/​data-​produ​cts/​agric​ultur​al-​produ​ctivi​
ty-​in-​the-​us/ Accessed on November 10, 2016 and EPA: https://​www3.​epa.​gov/​
clima​techa​nge/​Downl​oads/​ghgem​issio​ns/​508_​Compl​ete_​GHG_​1990_​2008.​pdf. 
Accessed on November 10, 2016. This url has been discontinued but information 
can be found at https://​cfpub.​epa.​gov/​ghgda​ta/​inven​torye​xplor​er/#​iagri​cultu​re/​
entir​esect​or/​allgas/​gas/​all

Variables* Mean Std Dev Minimum Maximum

y1 Crops 2.9426 3.4521 0.0327 22.9963

y2 Livestock 0.8655 0.7953 0.004 3.7274

b3 Methane 3.0913 5.584 0.0051 30.3838

b4 Nitrous Oxide 2.4751 2.4652 0.0093 12.7775

x1 Capital 1.5736 1.3427 0.0208 6.1439

x2 Labor 1.9615 2.1647 0.0118 13.6648

x3 Land 1.9396 1.7162 0.0242 11.2267

x4 Energy 1.7249 1.594 0.0153 8.3163

x5 Chemicals 1.9772 2.0939 0.0081 9.8501

x6 Pesticides 1.8768 1.9894 0.0045 11.5596

x7 Fertilizer 2.0512 2.2991 0.0101 12.7621

Table 2  Average agriculture PACs (Pollution Abatement Costs) for U.S. states, using hyperbolic and directional distance function 
projections

Using the hyperbolic projection Using the directional distance function projection

Disposability PAC Disposability PAC

Strong Weak Strong Weak

Eq. (2) Eq. (1) Eq. (3) Eq. (6) Eq. (5) Eq. (7)

1992 1.051 1.042 0.009 0.047 0.039 0.008

1993 1.067 1.057 0.010 0.061 0.052 0.009

1994 1.108 1.081 0.027 0.095 0.072 0.023

1995 1.173 1.136 0.037 0.147 0.117 0.030

1996 1.113 1.094 0.019 0.097 0.081 0.016

1997 1.117 1.096 0.021 0.101 0.084 0.018

1998 1.109 1.089 0.019 0.095 0.078 0.017

1999 1.123 1.105 0.018 0.106 0.091 0.015

2000 1.128 1.111 0.017 0.107 0.094 0.014

2001 1.109 1.089 0.019 0.095 0.078 0.017

2002 1.138 1.120 0.018 0.118 0.104 0.015

2003 1.109 1.089 0.019 0.095 0.078 0.017

Average 1.115 1.095 0.020 0.099 0.083 0.016

https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/
https://www.ers.usda.gov/data-products/agricultural-productivity-in-the-us/
https://www3.epa.gov/climatechange/Downloads/ghgemissions/508_Complete_GHG_1990_2008.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/508_Complete_GHG_1990_2008.pdf
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iagriculture/entiresector/allgas/gas/all
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#iagriculture/entiresector/allgas/gas/all
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Table  5 reports PACs for individual states.10 Whereas 
the overall average hyperbolic PAC is 0.020 (2% of out-
put), averages for individual states range from 0.0 for 

eight states to 0.125 for Delaware. The directional dis-
tance function results are similar, measuring an overall 
average PAC of 0.016, while averages for individual states 
range from 0.00 to 0.115 for Delaware. States with high 
PACs tend to be those with high ratios of livestock to 
crop production such as Alabama, Georgia, Maryland, 
South Carolina and Delaware. These states would poten-
tially have to sacrifice from 7 to 12.5% of their agricultural 
output if regulation were imposed to reduce these gasses. 
Their potential opportunity costs are thus quite substan-
tial. But in general, our estimates of PAC costs represent a 
small proportion of the value of U.S. agricultural produc-
tion (around 2%), given the size of the agricultural sector 
in these states. The average value of PAC per state allows 
adjustment to the size of agricultural activity in each 
state and it is shown in Appendix Table 6. The states with 
higher values sacrificed during the 1992–2003 period are 
Georgia, Alabama, Minnesota, Michigan, North Carolina 
and South Carolina. For the U.S. this amounts to a cost of 
$28–$33 billion (1996 dollars) during this period.

What about the eight states with an average PAC of 
0.0? Nominally, a PAC of zero indicates that if the state 
could operate with full efficiency on the frontier to 
which it was projected that year (only New Hampshire 
achieved a point actually on the frontier in every one of 
the 12 years), no output need be sacrificed due to a forced 
departure from free disposability of the polluting out-
puts. Geometrically, this implies that the weakly dispos-
able frontier and the strongly disposable frontier coincide 
at the point to which the state is projected. Referenc-
ing Fig. 1, the frontiers coincide at B, so the distance of 
the projection is the same to the two frontiers, and thus 
�
s − �

w = 0.

The average state-level pollution abatement costs, 
expressed in 1996 dollars (Table 6), we obtain by multi-
plying the PAC (measured in fraction of output) times 
the value of output. Results are similar in pattern across 
states to the PACs themselves. However, the rankings of 
states by total cost of pollution abatement can be quite 
different from rankings by PAC, simply because of differ-
ences in the sizes of the agricultural sectors.

Conclusions
This study has estimated the potential regulatory cost, 
at the level of states in the U.S., if agricultural methane 
and nitrous oxide had been regulated, for each year from 
1992 to 2003. We obtain these measures using estab-
lished non-parametric DEA methods of analyzing and 
interpreting production sets for an industry that pro-
duces undesirable, as well as desirable outputs. Our state-
level agricultural input and output data are from ERS, 
USDA, while state-level data on agricultural emissions of 
methane and nitrous oxide were obtained from EPA.

Table 3  Yearly value of PAC’s for U.S. agriculture, 1992–2003, in 
thousands of 1996 dollars

Years Hyperbolic Directional 
distance 
function

1992 1,055,286 952,172

1993 1,772,681 1,558,840

1994 2,801,434 2,389,808

1995 4,174,007 3,379,392

1996 2,982,051 2,570,677

1997 2,909,866 2,491,566

1998 2,627,978 2,189,271

1999 2,404,276 2,087,126

2000 3,408,032 2,829,113

2001 3,159,689 2,710,648

2002 2,820,788 2,394,933

2003 3,018,292 2,668,993

Sum 33,134,381 28,222,545

Table 4  Yearly Value of PACs for Livestock and Crop Production 
in U.S. Agriculture, 1992–2006, in thousands of 1996 dollars

Years Livestock production Crop production

Hyperbolic Directional 
distance 
function

Hyperbolic Directional 
distance 
function

1992 451,038.29 406,989.87 604,247.65 545,182.80

1993 868,546.80 755,059.09 904,134.10 803,781.80

1994 1,503,043.88 1,261,997.64 1,298,389.77 1,127,811.12

1995 2,315,960.49 1,834,523.13 1,858,046.94 1,544,868.99

1996 1,371,197.23 1,162,721.53 1,610,853.82 1,407,956.43

1997 1,487,465.47 1,249,765.78 1,422,400.90 1,241,801.14

1998 1,349,604.82 1,095,302.04 1,278,373.52 1,093,969.10

1999 1,281,805.01 1,089,358.54 1,122,471.34 997,767.78

2000 1,750,778.28 1,390,320.24 1,657,253.93 1,438,792.79

2001 1,681,820.97 1,421,724.78 1,477,867.75 1,288,923.87

2002 1,498,988.88 1,238,842.29 1,321,799.46 1,156,090.90

2003 1,585,747.78 1,396,574.55 1,432,543.85 1,272,418.90

Sum 17,145,997.90 14,303,179.48 15,988,383.03 13,919,365.61

10  This table also reports the hyperbolic and the directional measures for 
individual states. For Colorado for example, an average hyperbolic measure 
of 1.075 indicates that under strong disposability this state could increase 
output by 7.5% and decrease input use by the same percentage relative to 
the best performance state. The directional distance for Colorado indicates 
that the state could, on average, increase output by 7.2% and decrease inputs 
by 7.2% relative to the most efficient state.
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Table 5  Average hyperbolic and directional distance function efficiency measures with strong and weak disposability and their PACS, 
1992–2003

States Hyperbolic DDF

�
s

�
w

�
s
− �

w βs βw βs
− βw

AL 1.4748 1.4034 0.0714 0.3572 0.3176 0.0397

AR 1.0072 1.0000 0.0072 0.0069 0.0000 0.0069

AZ 1.0133 1.0075 0.0058 0.0128 0.0072 0.0056

CA 1.0030 1.0030 0.0000 0.0030 0.0030 0.0000

CO 1.0753 1.0619 0.0134 0.0717 0.0594 0.0123

CT 1.0438 1.0329 0.0109 0.0421 0.0320 0.0101

DE 1.1253 1.0000 0.1253 0.1148 0.0000 0.1148

FL 1.0011 1.0000 0.0011 0.0011 0.0000 0.0011

GA 1.1709 1.0980 0.0729 0.1560 0.0929 0.0631

IA 1.0080 1.0061 0.0019 0.0078 0.0060 0.0019

ID 1.0166 1.0164 0.0003 0.0162 0.0160 0.0003

IL 1.0109 1.0076 0.0033 0.0104 0.0072 0.0032

IN 1.0685 1.0570 0.0116 0.0646 0.0539 0.0107

KS 1.1671 1.1555 0.0116 0.1469 0.1376 0.0093

KY 1.1276 1.1268 0.0008 0.1162 0.1155 0.0007

LA 1.1063 1.1063 0.0000 0.0985 0.0985 0.0000

MA 1.0010 1.0000 0.0010 0.0010 0.0000 0.0010

MD 1.2709 1.1842 0.0866 0.2311 0.1647 0.0664

ME 1.2583 1.2104 0.0478 0.2236 0.1862 0.0373

MI 1.1644 1.1181 0.0463 0.1496 0.1105 0.0391

MN 1.1059 1.0841 0.0218 0.0974 0.0781 0.0193

MO 1.0245 1.0245 0.0000 0.0221 0.0221 0.0000

MS 1.1994 1.1994 0.0000 0.1738 0.1738 0.0000

MT 1.2568 1.2172 0.0395 0.2201 0.1889 0.0312

NC 1.0323 1.0093 0.0230 0.0313 0.0091 0.0222

ND 1.0908 1.0741 0.0167 0.0853 0.0701 0.0152

NE 1.0497 1.0476 0.0021 0.0473 0.0454 0.0020

NH 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000

NJ 1.0166 1.0000 0.0166 0.0162 0.0000 0.0162

NM 1.0512 1.0320 0.0192 0.0476 0.0304 0.0173

NV 1.0031 1.0031 0.0000 0.0030 0.0030 0.0000

NY 1.0362 1.0362 0.0000 0.0340 0.0340 0.0000

OH 1.0819 1.0610 0.0209 0.0765 0.0571 0.0194

OK 1.4605 1.4580 0.0025 0.3561 0.3547 0.0014

OR 1.0446 1.0195 0.0251 0.0424 0.0191 0.0233

PA 1.1828 1.1714 0.0115 0.1621 0.1515 0.0106

RI 1.0058 1.0000 0.0058 0.0057 0.0000 0.0057

SC 1.2518 1.1584 0.0934 0.2192 0.1449 0.0744

SD 1.1173 1.1023 0.0150 0.1077 0.0942 0.0134

TN 1.1646 1.1646 0.0000 0.1482 0.1482 0.0000

TX 1.4205 1.4197 0.0008 0.3322 0.3317 0.0005

UT 1.0494 1.0469 0.0025 0.0466 0.0444 0.0023

VA 1.3086 1.3039 0.0047 0.2600 0.2566 0.0034

VT 1.0308 1.0252 0.0056 0.0290 0.0239 0.0050

WA 1.0141 1.0006 0.0135 0.0138 0.0006 0.0132

WI 1.1861 1.1740 0.0120 0.1659 0.1552 0.0108

WV 1.1587 1.0935 0.0651 0.1391 0.0868 0.0522
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This is the first study to estimate, at the state level in the 
U.S., the pollution abatement costs for agricultural methane 
and nitrous oxide emissions, using the measure of potential 
abatement costs (PAC), as pioneered and applied by Färe 
and co-authors. This PAC measure is the common multiple 
by which the desirable outputs of a decision-making unit 
(DMU) could be increased measured from a point on the 
technology boundary to which the DMU is projected if it is 
not already on the boundary. This multiple represents the 
additional desirable output that a DMU could achieve if the 
undesirable output were freely disposable, compared to the 
output it could obtain if it could not dispose of the undesir-
able output without a cost. It has thus been argued to be a 
plausible upper bound on the potential cost of regulating the 
undesirable output. We use two alternative methods to pro-
ject DMUs (states in our case) to the technological bound-
ary defined by observations on all 48 states. The first method 
uses the enhanced hyperbolic efficiency (HE) trajectory, 
while the second method uses directional distance functions 
(DDF) for the same purpose.

Our results indicate that the average annual pollution 
abatement cost (PAC), across all states and years, 1992–
2003, is 0.020 (2%, or around $33 billion for the period) using 
the hyperbolic projection, or 0.0163 (1.63% or $ 28 billion 
for the period) using the DDF projection. While these seem 
to be relatively small penalties, at the state level the average 
PACs range from 0% for eight states to 12.5% for Delaware, 
9.3% for South Carolina, 8.7% for Maryland, 7.3% for Geor-
gia, 7.1% for Alabama and 6.5% for West Virginia.

Given the data and method of analysis, it is not possible for 
us to directly evaluate what factors contribute to the differ-
ences in PACs across states. The analytical method presumes 
that any given state could achieve what any other state (or 
a linear combination of them) has achieved for given levels 
of inputs. Because of differences in agro-climatic conditions 
and related differences in product mix, this is not likely to be 
feasible. However, some of the differences in GHG efficiency 
are no doubt due to adoption and use of GHG mitigation 
technologies, environmentally friendly agricultural practices 
and differences in environmental regulations across states. 
To the extent that agriculture in a state is unable to match 
the level of efficiency of other states, our PAC may underesti-
mate the pollution abatement cost.

Färe’s PAC measure does not specify any particular 
regulatory mechanism. Because of this it only provides us 

with a general notion of what the regulatory cost might be. 
Clearly, particular regulations such as maximum permissi-
ble emissions per animal or per acre, or per unit of output, 
or regulations prescribing best management practices, may 
nudge producers toward combinations of desirable and 
undesirable outcomes that are postulated by the Färe PAC 
measure. While study of those possible outcomes are surely 
warranted where feasible, the PAC estimates here provide 
plausible measures of the relative burdens that GHG regu-
lation might impose on the various states.

Appendices
Appendix 1: Programming problems solved
Hyperbolic efficiency measure under 
weak disposability defined in Eq.  (1) as 
HEw

(

xk , yk , bk
)

= Max{(� : �yk , �−1bk , �−1xk) ∈ Pw
(

xk
)

} 
computed by solving the following problem:

Subject to

where zt is an activity vector of length k used to identify 
the boundaries of the technology as linear combinations 
of observed points.

For convenience in computation, we used the following 
linear programming where

Max �

(8)
K
∑

k=1

zky
k
m ≥ �ykm m = 1, . . . ,M

(9)
K
∑

k=1

zkb
k
j = �bkj j = 1, . . . , J

(10)
K
∑

k=1

zkx
k
n ≤ �xkn n = 1, . . . ,N

zk ∈ RK
+

Ŵ = �
2
, z′ = �z.

MaxŴ

Table 5  (continued)

States Hyperbolic DDF

�
s

�
w

�
s
− �

w βs βw βs
− βw

WY 1.0431 1.0421 0.0010 0.0395 0.0386 0.0009

Average 1.1146 1.0951 0.0195 0.0990 0.0827 0.0163



Page 9 of 10Kabata et al. CABI Agriculture and Bioscience             (2022) 3:2 	

Under strong disposability 
HES

(

xk , yk , bk
)

= Max{(� : �yk , �−1bk , �−1xk) ∈ Ps
(

xk
)

} 
as defined in Eq. (2) is similarly solved by replacing the 
equal sign in the second constraint of both problems by 
the greater than or equal sign ( ≤).

The environmental directional distance function ( �Dt
E) 

is defined in Eq. (5) as follows:

where g =
[

gy ,−gb,−gx

]

 is a vector determining the 
direction in which the desirable output is expanded and 
the inputs and undesirable outputs are contracted. We 
compute this measure for each DMU by solving the fol-
lowing problem, assuming strong and weak disposability.

Subj. to:

To calculate the distance for DMU k under strong dis-
posability, the equality on the undesirable outputs in 
the second constraint is replaced by equal to or greater 
than ( ≥).

Appendix 2: Average States’ PACs
See Table 6.

(11)
K
∑

k=1

z′ky
k
m ≥ Ŵyk

′

m m = 1, . . . ,M

(12)
K
∑

k=1

z′kb
k
j = Ŵbk

′

j j = 1, . . . , J

(13)
K
∑

k=1

z′kx
k
n ≤ Ŵxk

′

n n = 1, . . . ,N

z′k ∈ RK
+

�Dk
E

(

yk , bk , xk ; gy , gb , gx

)

= Sup
[

β :
(

yk + βgy , b
k − βgb , x

k − βgx

)

∈ P(x)
]

max β

(14)
K
∑

k=1

zkykm ≥ ykm + βgy m = 1, . . . ,M

(15)
K
∑

k=1

zkbkj = bkj − βgb j = 1, . . . , J

(16)
K
∑

k=1

zkxkn ≤ xkn − βgx n = 1, . . . ,N

zk ≥ 0,

Table 6  Average value of PACs for livestock and crops, 1992–
2003, in thousands of 1996 dollars

State Livestock Crop

Hyperbolic
yiQl ∗ (�s − �w )

Directional
yiQl ∗ (βs − βw )

Hyperbolic
yiQl ∗ (�s − �

w)
Directional
yiQc ∗ (βs − βw )

AL 2,120,574.39 1,175,449.95 683,058.76 384,524.37

AR 275,343.04 263,426.52 204,527.38 195,675.68

AZ 57,312.56 54,843.32 76,894.42 73,566.08

CA 0.00 0.00 0.00 0.00

CO 397,980.88 364,324.95 275,484.16 252,475.87

CT 29,072.68 26,935.30 29,003.16 27,032.95

DE 931,883.08 853,922.22 274,476.29 251,990.61

FL 16,187.26 16,054.37 64,297.98 63,770.15

GA 3,003,994.71 2,599,531.22 1,877,193.59 1,625,654.26

IA 145,313.80 139,695.94 196,387.16 188,948.54

ID 5,133.06 5,035.56 6,841.24 6,711.29

IL 72,759.72 70,089.46 296,087.65 287,178.57

IN 290,016.91 267,949.62 557,095.10 515,341.22

KS 587,250.75 472,857.08 563,982.08 462,603.78

KY 15,303.79 14,369.63 19,731.83 18,725.65

LA 0.00 0.00 0.00 0.00

MA 1,507.44 1,498.01 3,067.30 3,048.70

MD 987,370.38 756,043.24 593,751.90 457,342.43

ME 180,649.15 139,923.70 120,790.75 94,691.15

MI 873,340.24 737,304.98 1,669,807.32 1,413,673.32

MN 1,130,676.95 1,006,555.01 1,531,025.27 1,383,096.65

MO 0.00 0.00 0.00 0.00

MS 0.00 0.00 0.00 0.00

MT 354,100.96 278,938.20 613,331.65 488,154.28

NC 1,311,899.77 1,263,151.39 795,151.12 766,122.34

ND 116,076.31 105,652.62 683,805.25 622,728.97

NE 125,550.33 116,413.59 146,585.82 135,962.79

NH 0.00 0.00 0.00 0.00

NJ 44,893.10 43,908.07 111,881.82 109,473.59

NM 269,914.51 242,979.04 103,097.41 92,770.94

NV 0.00 0.00 0.00 0.00

NY 0.00 0.00 0.00 0.00

OH 503,733.66 469,204.89 856,893.92 800,621.67

OK 69,630.58 38,809.67 37,935.93 21,374.67

OR 220,382.82 205,163.52 619,381.99 577,956.25

PA 405,805.79 375,045.39 257,265.52 237,985.12

RI 896.09 880.24 2,067.75 2,033.41

SC 909,564.99 722,230.73 950,124.03 757,538.48

SD 280,468.83 250,374.61 534,982.32 483,169.41

TN 0.00 0.00 0.00 0.00

TX 73,925.96 46,312.89 53,758.76 33,715.75

UT 19,523.77 17,700.13 11,366.95 10,284.31

VA 87,676.83 64,205.79 61,057.59 44,771.25

VT 32,492.78 28,860.87 8,425.52 7,485.39

WA 258,201.76 252,399.10 591,869.72 578,671.04

WI 660,384.79 589,893.12 381,481.08 341,815.60

WV 272,753.29 219,250.34 120,709.36 97,234.34

WY 6,450.18 5,995.18 3,706.17 3,444.73

U.S 17,145,997.90 14,303,179.48 15,988,383.03 13,919,365.61
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