Alexander P, Rounsevell MDA, Dislich C, Dodson JR, Engström K, Moran D. Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Glob Environ Change. 2015;35:138–47.
Article
Google Scholar
Batáry P, Báldi A, Kleijn D, Tscharntke T. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proc Roy Soc B: Biol Sci. 2011;278(1713):1894–902.
Article
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft. 2015;67(1).
Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol. 2003;18(4):182–8.
Article
Google Scholar
Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Sci. 2006 Jul;273(1595):1715–27.
CAS
PubMed
PubMed Central
Google Scholar
Caballero U, León-Cortés JL, Morón-Ríos A. Response of rove beetles (Staphylinidae) to various habitat types and change in Southern Mexico. J Insect Conserv. 2009;13(1):67–75.
Article
Google Scholar
Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. A meta-analysis of crop pest and natural enemy response to landscape complexity: Pest and natural enemy response to landscape complexity. Ecol Lett. 2011;14(9):922–32. https://doi.org/10.1111/j.1461-0248.2011.01642.x.
Article
PubMed
Google Scholar
Clough Y, Kruess A, Tscharntke T. Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ. 2007;118(1–4):285–90.
Article
Google Scholar
Collins KL, Boatman ND, Wilcox A, Holland JM, Chaney K. Influence of beetle banks on cereal aphid predation in winter wheat. Agric Ecosyst Environ. 2002;93(1–3):337–50.
Article
Google Scholar
Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Annu Rev Entomol. 2007;52(1):375–400. https://doi.org/10.1146/annurev.ento.52.110405.091407.
Article
CAS
Google Scholar
Dainese M, Martin EA, Aizen MA, Albrecht M, Bartomeus I, Bommarco R, et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci Adv. 2019;5(10):eaax0121. https://doi.org/10.1126/sciadv.aax0121.
Frank JH, Kanamitsu K. Paederus, Sensu Lato (Coleoptera: Staphylinidae): natural history and medical importance. J Med Entomol. 1987;24(2):155–91. https://doi.org/10.1093/jmedent/24.2.155.
Article
CAS
PubMed
Google Scholar
Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, et al. Landscape simplification filters species traits and drives biotic homogenization. Nature Commun. 2015;6(1):8568.
Article
Google Scholar
Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol. 2010;11(2):97–105.
Article
CAS
Google Scholar
Grab H, Branstetter MG, Amon N, Urban-Mead KR, Park MG, Gibbs J, et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science. 2019;363(6424):282–4. https://doi.org/10.1126/science.aat6016 .
Article
CAS
PubMed
Google Scholar
Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat Plants. 2016;2(3):16014.
Article
Google Scholar
Haan NL, Zhang Y, Landis DA. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol Evol. 2019. https://doi.org/10.1016/j.tree.2019.10.003.
Article
PubMed
Google Scholar
Hargreaves AL, Suárez E, Mehltreter K, Myers-Smith I, Vanderplank SE, Slinn HL, et al. Seed predation increases from the Arctic to the Equator and from high to low elevations. Sci Adv. 2019;5(2):eaau4403. https://doi.org/10.1126/sciadv.aau4403.
Irmler U, Klimaszewski J, Betz O. Introduction to the Biology of Rove Beetles. In: Betz O, Irmler U, Klimaszewski J, editors. Biology of Rove Beetles (Staphylinidae). Cham: Springer International Publishing; 2018. p. 1–4. https://doi.org/10.1007/978-3-319-70257-5.
Chapter
Google Scholar
Kebede Y, Baudron F, Bianchi F, Tittonell P. Unpacking the push-pull system: assessing the contribution of companion crops along a gradient of landscape complexity. Agric Ecosyst Environ. 2018;268:115–23. .
Article
Google Scholar
Kotze DJ, O’Hara RB. Species decline—but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia. 2003;135(1):138–48. https://doi.org/10.1007/s00442-002-1174-3 .
Article
PubMed
Google Scholar
Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR. Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Ann Rev Ecol Evol Syst. 2009;40(1):573–92. https://doi.org/10.1146/annurev.ecolsys.110308.120320.
Article
Google Scholar
MacLeod A, Wratten SD, Sotherton NW, Thomas MB. “Beetle banks” as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agric For Entomol. 2004;6(2):147–54. https://doi.org/10.1111/j.1461-9563.2004.00215.x
Article
Google Scholar
Mailafiya DM. Agrobiodiversity for biological pest control in Sub-Saharan Africa. In: Lichtfouse E (Ed) Sustainable agriculture reviews. Cham: Springer International Publishing; vol 18. 2015. p. 107–43. https://doi.org/10.1007/978-3-319-21629-4_4.
Martins ICF, Cividanes FJ, Ide S, Haddad GQ. Diversity and habitat preferences of Carabidae and Staphylinidae (Coleoptera) in two agroecosystems. Bragantia. 2013;71(4):471–80.
Article
Google Scholar
Méndez-Rojas DM, Cultid-Medina C, Escobar F. Influence of land use change on rove beetle diversity: A systematic review and global meta-analysis of a mega-diverse insect group. Ecol Indicators. 2021;122:107239.
Article
Google Scholar
Midega CAO, Bruce TJA, Pickett JA, Pittchar JO, Murage A, Khan ZR. Climate-adapted companion cropping increases agricultural productivity in East Africa. Field Crops Res. 2015;180:118–25. https://doi.org/10.1016/j.fcr.2015.05.022.
Article
Google Scholar
Midega CAO, Pittchar JO, Pickett JA, Hailu GW, Khan ZR. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 2018;105:10–5. https://doi.org/10.1016/j.cropro.2017.11.003.
Article
Google Scholar
Midega CAO, Jonsson M, Khan ZR, Ekbom B. Effects of landscape complexity and habitat management on stemborer colonization, parasitism and damage to maize. Agric Ecosyst Environ. 2014;188:289–93.
Article
Google Scholar
Naranjo SE, Ellsworth PC, Frisvold GB. Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems. Annu Rev Entomol [Internet]. 2015;60(1):621–45. https://doi.org/10.1146/annurev-ento-010814-021005.
Ndakidemi B, Mtei K, Ndakidemi PA. The potential of common beneficial insects and strategies for maintaining them in bean fields of Sub Saharan Africa. AJPS. 2016;07(03):425–36. https://doi.org/10.4236/ajps.2016.73036.
Article
CAS
Google Scholar
Palmu E, Ekroos J, Hanson HI, Smith HG, Hedlund K. Landscape-scale crop diversity interacts with local management to determine ground beetle diversity. Basic Appl Ecol. 2014;15(3):241–9.
Article
Google Scholar
Perez-Alvarez R, Nault BA, Poveda K. Effectiveness of augmentative biological control depends on landscape context. Sci Rep. 2019;9(1):8664.
Article
Google Scholar
Perez‐Alvarez R, Grab H, Polyakov A, Poveda K. Landscape composition mediates the relationship between predator body size and pest control. Ecol Appl. 2021. https://doi.org/10.1002/eap.2365.
Pinheiro J, Bates D, DebRoy S, Sarkar D. nlme: linear and nonlinear mixed effects models. 2021. https://CRAN.R-project.org/package=nlme. Accessed 8 Aug 2021.
Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J North Am Benthol Soc. 2006;25(4):730–55. https://doi.org/10.1899/0887/3593(2006)025[0730:FTNONA]2.0.CO2.
Article
Google Scholar
Poveda K, Díaz MF, Espinosa S, Obregon D, Ramirez A. Landscape complexity and elevation affect the effectiveness of a local pest-management practice. Glob Ecol Conserv. 2019;20:e00763.
Article
Google Scholar
Renauld M, Hutchinson A, Loeb G, Poveda K, Connelly H. Size in a native ground-nesting bee. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0150946.
Article
PubMed
PubMed Central
Google Scholar
Rivers A, Barbercheck M, Govaerts B, Verhulst N. Conservation agriculture affects arthropod community composition in a rainfed maize–wheat system in central Mexico. Appl Soil Ecol. 2016;100:81–90.
Article
Google Scholar
Rusch A, Birkhofer K, Bommarco R, Smith HG, Ekbom B. Predator body sizes and habitat preferences predict predation rates in an agroecosystem. Basic Appl Ecol. 2015;16(3):250–9. https://doi.org/10.1016/j.baae.2015.02.003.
Article
Google Scholar
Rusch A, Birkhofer K, Bommarco R, Smith HG, Ekbom B. Management intensity at field and landscape levels affects the structure of generalist predator communities. Oecologia. 2014;175(3):971–83. https://doi.org/10.1007/s00442-014-2949-z.
Article
PubMed
Google Scholar
Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ. 2016;221:198–204.
Article
Google Scholar
Sánchez-Bayo F, Wyckhuys KAG. Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv. 2019;232:8–27.
Article
Google Scholar
Stein K, Stenchly K, Coulibaly D, Pauly A, Dimobe K, Steffan-Dewenter I, et al. Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa. Ecol Evol. 2018;8(13):6827–38. https://doi.org/10.1002/ece3.4197.
Article
PubMed
Google Scholar
Stoffolano JG, Geden CJ. Succession of manure arthropods at a poultry farm in Massachusetts, USA, with observations on Carcinops Pumilio (Coleoptera: Histeridae) sex ratios, ovarian condition, and body size. J Med Entomol. 1987;24(2):212–20. https://doi.org/10.1093/jmedent/24.2.212.
Article
Google Scholar
Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett. 2005;8(8):857–74.
Article
Google Scholar
Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F, Gratton C, et al. When natural habitat fails to enhance biological pest control—five hypotheses. Biol Conserv. 2016;204:449–58.
Article
Google Scholar
Veres A, Petit S, Conord C, Lavigne C. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric Ecosyst Environ. 2013;166:110–7.
Article
Google Scholar
Work TT, Klimaszewski J, Thiffault E, Bourdon C, Paré D, Bousquet Y, et al. Initial responses of rove and ground beetles (Coleoptera, Staphylinidae, Carabidae) to removal of logging residues following clearcut harvesting in the boreal forest of Quebec, Canada. ZooKeys. 2013;(258):31–52.
Article
Google Scholar
Zhao ZH, Sandhu HS, Gao F, He DH. Shifts in natural enemy assemblages resulting from landscape simplification account for biocontrol loss in wheat fields. Ecol Res. 2015;30(3):493–8. http://doi.org/10.1007/s11284-015-1245-7.
Article
CAS
Google Scholar