Skip to main content

Table 2 Response of the number of T. absoluta larvae per five leaves and of the mean number of B. tabaci adults per leaf to the initial density of M. pygmaeus introduced, the presence of D. errans, and the second-order interaction. (-) parameters not included in the model

From: Combined use of zoophytophagous mirids for sustainable biological protection of greenhouse tomato crops

Explanatory variables

d.f

T. absoluta larvae

B. tabaci adults

χ2

P

χ2

P

1st generation

 M. pygmaeus density * D. errans presence

1

0.577

0.45

4.77

0.029 * d

 M. pygmaeus density

1

0.0630

0.80

–

–

 D. errans presence

1

4.00

0.046 * a

–

–

2nd generation

 M. pygmaeus density * D. errans presence

1

0.0953

0.76

0.651

0.42

 M. pygmaeus density

1

2.77

0.096

1.86

0.17

 D. errans presence

1

28.6

 < 0.001 *** b

14.4

 < 0.001 *** e

3rd generation

 M. pygmaeus density * D. errans presence

1

0.0637

0.80

0.0188

0.89

 M. pygmaeus density

1

1.92

0.17

0.0941

0.76

 D. errans presence

1

20.5

 < 0.001 *** c

28.4

 < 0.001 *** f

  1. * P < 0.05; *** P < 0.001; ‘–’ effects not tested
  2. Model coefficients: a Intercept 0.823; De − 0.245. b Intercept − 0.0566; De − 1.01. c Intercept − 0.975 Mp15 0.915. ‘Mp15′ 15 M. pygmaeus initially introduced per plant; ‘De’ D. errans present. c Intercept − 0.834; De − 1.22. d Intercept 1.64; Mp15 − 0.307; De − 0.288; Mp15De 0.311. e Intercept 0.833; De − 0.310. f Intercept 0.0691; De − 0.823. ‘Mp15′ 15 M. pygmaeus initially introduced per plant; ‘De’ D. errans present. Models used were generalised linear mixed models with a negative binomial error distribution. Generation time: T. absoluta and B. tabaci ≤ 3 weeks (1st generation Weeks 1–3; 2nd generation Weeks 4–6; 3rd generation Weeks 7–8)