Akanksha S, Shuklaa A, Attria K, Kumare M, Kumarf P, Sutteeg A, Singhb G, Barnwala RO, Singlaa N. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol Environ Saf. 2020;201: 110812. https://doi.org/10.1016/j.ecoenv.2020.110812.
Article
CAS
Google Scholar
Aguilar J, Illsley C, Marielle C. Los sistemas agrícolas de maíz y sus procesos técnicos. In: Esteva G, Marielle C, editors. Sin maíz no hay país. México: Conaculta Ciudad de México; 2003. p. 83–122.
Google Scholar
Arnés E, Antonio AJ, del Val E, Astier M. Sustainability and climate variability in low-input peasant maize systems in the central Mexican highlands. Agr Ecosyst Environ. 2013;181:195–205. https://doi.org/10.1016/j.agee.2013.09.022.
Article
Google Scholar
Arnett RA Jr. American insects. A handbook of the insects of North America. 2nd ed. Boca Raton, FL: CRC Press; 2000. p. 1003.
Google Scholar
Attwood SJ, Maron M, House APN, Zammit C. Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr. 2008;17:585–99. https://doi.org/10.1111/j.1466-8238.2008.00399.x.
Article
Google Scholar
Bejarano F. Los Plaguicidas Altamente Peligrosos en México. Red de Acción sobre Plaguicidas y Alternativas en México, Centro de Investigación en Alimentación y Desarrollo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, International POPs Elimination Network , Programa de las Naciones Unidas para el Desarrollo, Universidad Autónoma de Nayarit, Red Temática de Toxicología de Plaguicidas, Red de Acción en Plaguicidas y sus Alternativas para América Latina, Universidad Autónoma del Estado de México, Unión de Científicos Comprometidos con la Sociedad, Texcoco, Estado de México. 2017.
Bengtsson J, Ahnström J, Weibull AC. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol. 2005;42:261–9. https://doi.org/10.1111/j.1365-2664.2005.01005.x.
Article
Google Scholar
Blanco CA, Pellegaud G, Nava-Camberos U, Lugo-Barrera D, Vega-Aquino P, Coello J, Teraán-Vargas A, Vargas-Camplis J. Maize Pests in Mexico and Challenges for the Adoption of Integrated Pest Management Programs. J Integrat Pest Management. 2014;5:1–9. https://doi.org/10.1603/IPM14006.
Article
Google Scholar
Borror DJ, Triplehorn CA, Johnson NF. An introduction to the study of insects. 6th ed. Fort Worth: Saunders College Publishing; 1989. p. 875.
Google Scholar
Brian H, McArdle Marti J, Anderson. Variance heterogeneity transformations and models of species abundance: a cautionary tale. Canadian Journal of Fisheries and Aquatic Sciences. 2004;61(7):1294-1302. https://doi.org/10.1139/f04-051.
Article
Google Scholar
Caspar A., Hallmann Martin, Sorg Eelke, Jongejans Henk, Siepel Nick, Hofland Heinz, Schwan Werner, Stenmans Andreas, Müller Hubert, Sumser Thomas, Hörren Dave, Goulson Hans, de Kroon Eric Gordon, Lamb More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE. 2017;12(10):e0185809. https://doi.org/10.1371/journal.pone.0185809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chao A, Gotelli NJ, Hsieh TC, Sande EL, Ma KH, Colwell RK, Ellison AM. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84:45–67. https://doi.org/10.1890/13-0133.1.
Article
Google Scholar
Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S. Consequences of changing biodiversity. Nature. 2000;405:234–42.
Article
CAS
Google Scholar
Clark MS, Ferris H, Klonskyc K, Laninid WT, van Bruggene HC, Zalom FG. Agronomic, economic, and environmental comparison of pest management in conventional and alternative tomato and corn systems in northern California. Agr Ecosyst Environ. 1998;68:51–71. https://doi.org/10.1016/S0167-8809(97)00130-8.
Article
Google Scholar
de Pedro L, Perera-Fernandez LG, Lopez-Gallego E, Perez-Marcos M, Sanchez JA. The Effect of Cover Crops on the Biodiversity and Abundance of Ground-Dwelling Arthropods in a Mediterranean Pear Orchard. Agronomy. 2020;10:580. https://doi.org/10.3390/agronomy10040580.
Article
Google Scholar
Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 2007;52:81–106.
Article
CAS
Google Scholar
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene. Science. 2014;345:401–6. https://doi.org/10.1126/science.1251817.
Article
CAS
PubMed
Google Scholar
D.K, Letourneau B, Goldstein. Pest damage and arthropod community structure in organic vs. conventional tomato production in California. Journal of Applied Ecology. 2001;38(3) 557-570 https://doi.org/10.1046/j.1365-2664.2001.00611.x.
Article
Google Scholar
Duelli P, Obrist MK, Schmatz DR. Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric Ecosyst Environ. 1999;74:33–64. https://doi.org/10.1016/S0167-8809(99)00029-8.
Article
Google Scholar
Eaton, E.R., Kaufman, K. (2007). Kaufman Field Guide to Insects of North America. Houghton Mifflin. 392 pp
Ebel R, Pozas JGC, Soria FM, Cruz JG. Manejo orgánico de la milpa: rendimiento de maíz, frijol y calabaza en monocultivo y policultivo. Terra Latinoamericana. 2017;35:149–60. https://doi.org/10.28940/terra.v35i2.166.
Article
Google Scholar
Ellis, D. Taxonomic sufficiency in pollution assessment. Marine Pollution Bulletin. 1985;16(12):459.
Article
Google Scholar
Ellison AM. Partitioning diversity. Ecology. 2010;91:1962–3. https://doi.org/10.1890/09-1692.1.
Article
PubMed
Google Scholar
Emery SE, Jonsson M, Silva H, Ribeiro A, Mills NJ. High agricultural intensity at the landscape scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agr Ecosyst Environ. 2021;306: 107199. https://doi.org/10.1016/j.agee.2020.107199.
Article
Google Scholar
Encliclovida. https://enciclovida.mx.
FAO. Agricultura orgánica, ambiente y seguridad alimentaria. Serie sobre medio ambiente y recursos naturales. N°4. Ed. Scialabba, N., Hattam, C. Roma. 2003. 259p.
Flores-Gutiérrez A, Mora F, Avila-Cabadilla LL, Boege K, del-Val, E. . Assessing the cascading effects of management and landscape on the arthropod guilds occurring in papaya plantations. Agr Ecosyst Environ. 2020;293: 106836. https://doi.org/10.1016/j.agee.2020.106836.
Article
Google Scholar
Geldenhuys M, Gaigher R, Pryke JS, Samways MJ. Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agr Ecosyst Environ. 2021;30: 107222. https://doi.org/10.1016/j.agee.2020.107222.
Article
CAS
Google Scholar
Hale WG, Saunders VA, Margham JP, Hernández-Antonio A, Hansen AM. Uso de plaguicidas en dos zonas agrícolas de México y evaluación de la contaminación y sedimentos. Revista Internacional De Contaminación Ambiental. 2011;27:115–27.
Google Scholar
Hanula, J. L., Wade, D. D., O’Brien, J. & Loeb, S. C. (2009). Ground-dwelling arthropod association with coarse woody debris following long-term dormant season prescribed burning in the longleaf pine flatwoods of north Florida. Florida Entomologist, 92(2), 229–242.
Article
Google Scholar
Hernández-Antonio, A., and Hansen, A.M. (2011) Uso de plaguicidas en dos zonas agrícolas de México y evaluación de la contaminación y sedimentos. Revista Internacional de Contaminación Ambiental, 27, 115-127.
Google Scholar
Hsieh TC, Anne CK, Ma H. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7:1451–6. https://doi.org/10.1111/2041-210X.12613.
Article
Google Scholar
Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D. Maximizing arthropod mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ. 2009;7:196–203. https://doi.org/10.1890/080035.
Article
Google Scholar
Katja, Poveda María Isabel Gómez, Jiménez André, Kessler. The enemy as ally: herbivore-induced increase in crop yield. Ecological Applications. 2010;20(7):1787-1793. https://doi.org/10.1890/09-1726.1.
Article
PubMed
Google Scholar
Katja, Poveda María F., Díaz Augusto, Ramirez. Can overcompensation increase crop production?. Ecology. 2018;99(2):270-280. https://doi.org/10.1002/ecy.2088.
Article
PubMed
Google Scholar
Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Uhd Jepsen J, Kalinkat G, Neuvonen S, Niemelä P, Terblanche JS, Økland B, Björkman C. Complex responses of global insect pests to climate warming. Front Ecol Environ. 2020;18:141–50. https://doi.org/10.1002/fee.2160.
Article
Google Scholar
León-García I, Rodríguez-Leyva E, Ortega-Arenas LD, Solís-Aguilar JF. Susceptibilidad de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) a insecticidas asociada a césped en Quintana Roo México. Agrociencia. 2012;46:279–87.
Google Scholar
Lichtenberg EM, Kennedy CM, Kremen C, et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob Change Biol. 2017;23:4946–57. https://doi.org/10.1111/gcb.13714.
Article
Google Scholar
Losey JE, Vaughan M. The economic value of ecological services provided by insects. Bioscience. 2006;56:311–23.
Article
Google Scholar
Marti J., Anderson. A new method for non-parametric multivariate analysis of variance. Austral Ecology. 2001;26(1):32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
Article
Google Scholar
Martínez DYP, Sánchez JE, Rodríguez MNM, Astier MC. (2020) Sustentabilidad de agroecosistemas de milpa en La Trinidad Ixtlán Revista de la Facultad de Agronomía. La Plata. 119: 1–16. https://doi.org/10.24215/16699513e048.
Mhlanga B, Muoni T, Mashavakure N, Mudadirwa D, Mulenga R, Sitali M, Thierfelder C. Friends or foes? Population dynamics of beneficial and detrimental aerial arthropods under Conservation Agriculture. Biol Control. 2020;148: 104312. https://doi.org/10.1016/j.biocontrol.2020.104312.
Article
Google Scholar
Naturalista. https://www.naturalista.mx/home..
Numa C, Tonelli M, Lobo JM, Verdú JR, Lumaret JP, Sánchez-Piñero F, Ruiz JL, Dellacasa M, Ziani S, Arriaga A, Cabrero F, Labidi I, Barrios V, Şenyüz Y, Anlaş S. The conservation status and distribution of Mediterranean dung beetles. Malaga: IUCN; 2020.
Book
Google Scholar
Olsen SR, Dean LA. Phosphorus. In: Methods of soil analysis Part 2 Agronomy. USA: Black CA; 1965. p. 1035–49.
Google Scholar
Orozco-Ramírez Q, Astier M. Ser campesino y sembrar milpa hoy, como estrategia de adaptación y resistencia. In: Borrego A, Ramírez I, Astier M. Integración global: El nuevo entorno de los territorios locales. Editorial CIGA, UNAM, Morelia. 2021.
Otieno NE, Pryke JS, Butler M, Jacobs SM. Top-down suppression of arthropod herbivory in intercropped maize and organic farms evidenced from δ13C and δ15N stable isotope analyses. Agron Sustain Dev. 2019;39:1–10. https://doi.org/10.1007/s13593-019-0585-z.
Article
Google Scholar
Perfecto I. Indirect and direct effects in a tropical agroecosystem: the maize-pest-ant system in Nicaragua. Ecology. 1990;71:2125–34.
Article
Google Scholar
Perfecto I. Ants (Hymenoptera: Formicidae) as Natural Contro l Agents of Pests in Irrigated Maize in Nicaragua. J Econ Entomol. 1991;84:65–70. https://doi.org/10.1093/jee/84.1.65.
Article
Google Scholar
Perfecto I, Castiñeiras A. Deployment of the predaceous ants and their conservation in agroecosystems. In: Barbosa P, editor. Conservation Biological Control. San Diego: Academic Press; 1998. p. 269–89.
Chapter
Google Scholar
Pérez de la Cerda, F. de J., Córdova, T., Santacruz, A., Castillo, F., Cárdenas, E. y A. Delgado Alvarado. Relación entre vigor inicial, rendimiento y sus componentes en poblaciones de maíz chalqueño. Agricultura Técnica en México. 2007;33(1):5-16.
Google Scholar
Philipp, Lehmann Tea, Ammunét Madeleine, Barton Andrea, Battisti Sanford D, Eigenbrode Jane Uhd, Jepsen Gregor, Kalinkat Seppo, Neuvonen Pekka, Niemelä John S, Terblanche Bjørn, Økland Christer, Björkman. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment. 2020;18(3):141-150. https://doi.org/10.1002/fee.2160.
Article
Google Scholar
Philpott SM, Armbrecht I. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol. 2006;31:369–77. https://doi.org/10.1111/j.1365-2311.2006.00793.x.
Article
Google Scholar
Philpott SM, Perfecto I, Vandermeer J. Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. In: Hawksworth DL, Bull AT, editors. Arthropod Diversity and Conservation Topics in Biodiversity and Conservation, vol. 1. Dordrecht: Springer; 2006.
Google Scholar
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53. https://doi.org/10.1016/j.tree.2010.01.007.
Article
PubMed
Google Scholar
Prisila A., Mkenda Patrick A., Ndakidemi Philip C., Stevenson Sarah E. J., Arnold Steven R., Belmain Maneno, Chidege Geoff M., Gurr. Field Margin Vegetation in Tropical African Bean Systems Harbours Diverse Natural Enemies for Biological Pest Control in Adjacent Crops. Sustainability. 2019;11(22):6399. https://doi.org/10.3390/su11226399.
Article
Google Scholar
Quinn GP, Keough MJ. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 2002. p. 537.
Book
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. 2008. Retrieved from https://www.R-project.org.
Google Scholar
Ricardo, Perez‐Alvarez Brian A., Nault Katja, Poveda . Contrasting effects of landscape composition on crop yield mediated by specialist herbivores. Ecological Applications. 2018;28(3):842-853. https://doi.org/10.1002/eap.1695.
Article
PubMed
Google Scholar
Risch SJ, Carroll CR. Th e ecological role of ants in two Mexican agroecosystems. Oecologia. 1982;55:114–9.
Article
Google Scholar
Rivers A, Barbercheck M, Govaerts B, Verhulst N. Conservation agriculture affects arthropod community composition in a rainfed maize-wheat system in central Mexico. Appl Soil Ecol. 2016;100:81–90. https://doi.org/10.1016/j.apsoil.2015.12.004.
Article
Google Scholar
Rosas-Ramos N, Banos-Picon L, Tormos J, Asis JD. Natural enemies and pollinators in traditional cherry orchards: Functionally important taxa respond differently to farming system. Agr Ecosyst Environ. 2020;295: 106920. https://doi.org/10.1016/j.agee.2020.106920.
Article
Google Scholar
Rodríguez-Robayo K, Méndez-López ME, Molina-Villegas A, Juárez L. What do we talk about when we talk about milpa? A conceptual approach to the significance, topics of research and impact of the mayan milpa system. J Rural Stud. 2020;77:47–54. https://doi.org/10.1016/j.jrurstud.2020.04.029.
Article
Google Scholar
Roel, van Klink Diana E, Bowler Konstantin B, Gongalsky Ann B, Swengel Alessandro, Gentile Jonathan M Chase. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020;368(6489):417-420. https://doi.org/10.1126/science.aax9931.
Article
CAS
PubMed
Google Scholar
Rosenhemin JA. Control Failures Following Insecticide Applications in Commercial Agriculture: How Often Do They Occur? A Case Study of Lygus hesperus (Hemiptera: Miridae) Control in Cotton. 2021.
Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agr Ecosyst Environ. 2016;221:198–204. https://doi.org/10.1016/j.agee.2016.01.039.
Article
Google Scholar
Saenz-Romo MG, Veas-Bernal A, Martinez-Garcia H, Campos-Herrera R, Ibanez-Pascual S, Martinez-Villar E, Perez-Moreno I, Marco-Mancebon VS. Ground cover management in a Mediterranean vineyard: Impact on insect abundance and diversity. Agric Ecosyst Environ. 2019;283:106571. https://doi.org/10.1016/j.agee.2019.106571.
Article
Google Scholar
SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). Norma Oficial Mexicana NOM-021SEMARNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. SEMARNT. México, D. F. 2002.
Theiling KM, Croft BA. Pesticide side-effects on arthropod natural enemies: a database summary. Agr Ecosyst Environ. 1988;21:191–218. https://doi.org/10.1016/0167-8809(88)90088-6.
Article
CAS
Google Scholar
Thurman JH, Northfield TD, Snyder WE. Weaver ants provide ecosystem services to tropical tree crops. Front Ecol Evol. 2019. https://doi.org/10.3389/fevo.2019.00120.
Article
Google Scholar
Tschumi M, Ekroos J, Hjort C, Smith HG, Birkhofer K. Predation-mediated ecosystem services and disservices in agricultural landscapes. Ecol Appl. 2018;28:2109–18. https://doi.org/10.1002/eap.1799.
Article
PubMed
Google Scholar
van Klink R, Bowler DE, Gongalsky KB, Swenge AB, Gentile A, Chase JM. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science. 2020;368:417–20. https://doi.org/10.1126/science.aax9931.
Article
CAS
PubMed
Google Scholar
Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38.
Article
CAS
Google Scholar
White RE, Peterson RT. A Field Guide to the Beetles of North America (Peterson Field Guide). Mifflin Harcourt: Houghton; 1998. p. 384.
Google Scholar
Wills BD, Kim TN, Fox AF, Gratton C, Landis DA. Reducing native ant abundance decreases predation rates in midwestern grasslands. Environ Entomol. 2019;48:1360–8. https://doi.org/10.1093/ee/nvz127.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Ricketts TH, Kremen C, Carney K, Swinton SM. Ecosystem services and dis-services to agriculture. Ecol Econ. 2007;64:253–60. https://doi.org/10.1016/j.ecolecon.2007.02.024.
Article
Google Scholar