AAAS. Federal R&D budget dashboard. https://www.aaas.org/programs/r-d-budget-and-policy/federal-rd-budget-dashboard. Accessed 24 Nov 2021.
Armstrong B, King L, Clifford R, Jitlal M. Food and You 2: Wave 1 Key Findings. Food Standard Agency. United Kingdom. 2021. https://www.food.gov.uk/sites/default/files/media/document/fy2-wave-1-report-_key-findings_1.pdf. Accessed 16 Feb 2022.
Babb D. History of the Mule. American Mule Museum. 2021. https://www.mulemuseum.org/history-of-the-mule.html. Accessed 23 Nov 2021.
Beghin JC, Gustafson CR. Consumer valuation of and attitudes towards novel foods produced with new plant engineering techniques: a review. Sustainability. 2021;13:11348. https://doi.org/10.3390/su132011348.
Article
CAS
Google Scholar
Berger TJ, Maga EA, Ross PJ, Denicol AN, Horback, KR, Yang, XI. Boar meat without boar taint: a model. Accession no: 1018166. USDA National Institute of Food and Agriculture, Washington, DC. 2019. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1018166)&format=WEBLINK. Accessed 6 Dec 2021.
Bleck GT, White BR, Miller DJ, Wheeler MB. Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci. 1998;76:3072–8. https://doi.org/10.2527/1998.76123072x.
Article
CAS
PubMed
Google Scholar
Campbell KHS, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6. https://doi.org/10.1038/380064a0.
Article
CAS
PubMed
Google Scholar
Cao W, Mays JK, Kulkarni G, Dunn JR, Fulton RM, Fadly AM. Further observations on serotype 2 Marek’s disease virus-induced enhancement of spontaneous avian leukosis virus-like bursal lymphomas in ALVA6 transgenic chickens. Avian Pathol. 2015;44:23. https://doi.org/10.1080/03079457.2014.989195.
Article
PubMed
Google Scholar
Caputo V, Lusk J, Kilders V. Consumer Acceptance of Gene Edited Foods: a nationwide survey on US consumer beliefs, knowledge, understanding, and willingness to pay for gene-edited foods under different treatments. 2020. FMI Foundation report. https://foodinsight.org/2021-food-health-survey/. Accessed 5 Dec 2021.
Ciccarelli M, Giassetti MI, Miao D, Oatley MJ, Robbins C, Lopez- Biladeau B, Waqas MS, Tibary A, Whitelaw B, Lillico S, Park CH, Park KE, Telugu B, Fan Z, Liu Y, Regouski M, Polejaeva IA, Oatley JM. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci USA. 2020;117:24195–204. https://doi.org/10.1073/pnas.2010102117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clancy M, Fuglie K, Heisey P. U.S. Agricultural R&D in an Era of Falling Public Funding. Amber Waves. 2016. USDA, Economic Research Service. https://www.ers.usda.gov/amber-waves/2016/november/us-agricultural-r-d-in-an-era-of-falling-public-funding/. Accessed 5 Dec 2021.
Cleveland BM, Yamaguchi G, Radler LM, Shimizu M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci Rep. 2018;8:16054. https://doi.org/10.1038/s41598-018-34326-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
DEFRA (United Kingdom Department for Environment, Food and Rural Affairs). Summary of responses to a consultation on the regulation of genetic technologies. 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1021309/genetic-technologies-regulation-summary-of-responses.pdf. Accessed 5 Dec 2021.
Donovan DM. Genetically modified livestock via zygotic genome editing. Accession no: 0425211. USDA National Institute of Food and Agriculture, Washington, DC. 2013. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=0425211)&format=WEBLINK. Accessed 6 Dec 2021.
Donovan DM, Park C, Swift S, Telugu B. Creation of novel CRISPR antimicrobials and genomic integration of peptidoglycan hydrolase antimicrobials via genome editing with CRISPR technology. Accession no: 0426737. USDA National Institute of Food and Agriculture, Washington, DC. 2014. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=0426737)&format=WEBLINK. Accessed 6 Dec 2021.
Dunham RA, Warr GW, Nichols A, Duncan PL, Argue B, Middleton D, Kucuktas H. Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol (NY). 2002;4:338–44. https://doi.org/10.1007/s10126-002-0024-y.
Article
CAS
Google Scholar
Environment Canada and Health Canada. Risk assessment summary conducted pursuant to the new substances notification regulations (Organisms) of the Canadian Environmental Protection Act, 1999. NSN 15676: Cassie line of genetically modified Sus scrofa Domestica. Nov 26, 2009. https://www.canada.ca/content/dam/eccc/migration/main/subsnouvelles-newsubs/5b919791-d9a0-48ec-a4a1-7b2fa8937d6e/nsn-2015676-20-20en.pdf. Accessed 23 Nov 2021.
European Commission. Study on the status of new genomic techniques under Union law and in light of the Court of Justice ruling in Case C-528/16. SWD(2021) 92 final. Brussels: European Commission. 2021. https://ec.europa.eu/food/plants/genetically-modified-organisms/new-techniques-biotechnology/ec-study-new-genomic-techniques_en. Accessed 6 Dec 2021.
Fuglie KO, Heisey PW. Economic returns to public agricultural research. EB-10. USDA Economic Research Service. 2007. https://www.ers.usda.gov/webdocs/publications/42826/11496_eb10_1_.pdf?v=1238.7. Accessed 5 Dec 2021.
Garcia ALS, Bosworth B, Waldbieser G, Misztal I, Tsuruta S, Lourenco DAL. Development of genomic predictions for harvest and carcass weight in channel catfish. Genet Sel Evol. 2018;50:66. https://doi.org/10.1186/s12711-018-0435-5.
Article
PubMed
PubMed Central
Google Scholar
Ghosh P. Gene-edited animal plan to relieve poverty in Africa. BBC News. 2019. https://www.bbc.com/news/science-environment-47197896. Accessed 7 Dec 2021.
Go Brangus. History of the International Brangus Breeding Association. 2008. https://gobrangus.com/wp-content/uploads/2014/08/02HISTORY_OF_IBBA.pdf. Accessed 23 Nov 2021.
Golding MC, Long CR, Carmell MA, Hannon GJ, Westhusin ME. Suppression of prion protein in livestock by RNA interference. PNAS. 2006;103:5285–90. https://doi.org/10.1073/pnas.0600813103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green RD, Qureshi MA, Long JA, Burfening PJ, Hamernik DL. Identifying the future needs for long-term USDA Efforts in agricultural animal genomics. Int J Biol Sci. 2007;3:185–91. https://doi.org/10.7150/ijbs.3.185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunert KG. Current issues in the understanding of consumer food choice. Trends Food Sci Technol. 2002;13:275–85.
Article
CAS
Google Scholar
Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL. Production of transgenic rabbits, sheep and pigs by microinjection. Nature. 1985;315:680–3. https://doi.org/10.1038/315680a0.
Article
CAS
PubMed
Google Scholar
Hallerman EM, Bredlau JP, Camargo LSA, Dagli MLZ, Karembu M, Ngure G, Romero-Aldemita R, Rocha-Salavarrieta PJ, Tizard M, Walton M, Wray-Cahen D. Towards progressive regulatory approaches for agricultural applications of animal biotechnology. Transgenic Res. 2022. https://doi.org/10.1007/s11248-021-00294-3.
Article
PubMed
PubMed Central
Google Scholar
Hoffman NE. Revisions to USDA biotechnology regulations: the SECURE rule. Proc Nat Acad Sci. 2021;118:e2004841118. https://doi.org/10.1073/pnas.2004841118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunton P. 100 years of poultry genetics. World’s Poultry Sci J. 2006;62:417–28. https://doi.org/10.1079/WPS2006104.
Article
Google Scholar
ISAAA (International Service for the Acquisition of Agri-biotech Applications). Global status of commercialized biotech/GM Crops in 2019: biotech crops drive socio-economic development and sustainable environment in the new frontier. ISAAA Brief No. 55. ISAAA: Ithaca, NY; 2019.
Jahn M. New solutions for a changing climate: The policy imperative for public investment in agriculture R&D. Chicago Council on Global Affairs. 2020. https://www.thechicagocouncil.org/sites/default/files/2020-12/report_new-solutions-for-changing-climate_0.pdf. Accessed 24 Nov 2021.
Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of gene editing for climate change in agriculture. Front Sustain Food Syst. 2021;5:685801. https://doi.org/10.3389/fsufs.2021.685801.
Article
Google Scholar
Kasinathan P, Wei H, Xiang T, Molina JA, Metzger J, Broek D, Kasinathan S, Faber DC, Allan MF. Acceleration of genetic gain in cattle by reduction of generation interval. Sci Rep. 2015;5:8674. https://doi.org/10.1038/srep08674.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y. Investigation of genetic factors for swine influenza a virus and porcine reproductive and respiratory syndrome virus. Accession no: 1019022. USDA National Institute of Food and Agriculture, Washington, DC. 2019. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1019022)&format=WEBLINK. Accessed 6 Dec 2021.
Livestock Conservancy: Beltsville Small White Turkey. 2021. https://livestockconservancy.org/heritage-breeds/heritage-breeds-list/beltsville-small-white-turkey/. Accessed 23 Nov 2021.
Lusk JL, Roosen J, Shogren J. The Oxford handbook of the economics of food consumption and policy. Oxford: Oxford University Press; 2011.
Book
Google Scholar
Maga EA, Shoemaker CF, Rowe JD, BonDurant RH, Anderson GB, Murray JD. Production and processing of milk from transgenic goats expressing human lysozyme in the mammary gland. J Dairy Sci. 2006;89:518–24. https://doi.org/10.3168/jds.S0022-0302(06)72114-2.
Article
CAS
PubMed
Google Scholar
Maga EA, Berger TJ, Horback, KM. Reduction of androgens by gene editing for the genetic containment of livestock. Accession no: 1017031. USDA National Institute of Food and Agriculture, Washington, DC. 2018. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1017031)&format=WEBLINK. Accessed 6 Dec 2021.
Maryanski J. History of the U.S. Food and Drug Administration. Oral history interview with James Maryanski. 2006. https://www.fda.gov/media/83918/download. Accessed 23 Oct 2021.
McMurray G, Murray S, Butler E, Northrup D, Odom L Stulberg E, Wendroth O. A roadmap for AgARDA at USDA. American Society of Agronomy. 2021. https://www.agronomy.org/files/science-policy/letters/2021-04-agarda-roadmap.pdf. Accessed on 7 Dec 2021.
Mehra VK, Kumar S. The application of CRISPR/Cas9 technology for farm animals: a review. Agric Rev. 2021. https://doi.org/10.18805/ag.R-2163.
Article
Google Scholar
MHLW. Japanese Ministry of Health, Labor, and Welfare. List of foods and additives notified based on food hygiene guidelines for foods and additives applied to genome editing technology. 2021. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/shokuhin/bio/genomed/newpage_00010.html. Accessed 23 Nov 2021. (In Japanese).
Moser DW, Miller SP, Retallick KJ, Lu D, Kuehn LA. Genomic selection in the beef industry: current achievements and future directions. J Anim Sci. 2019;97(Suppl. 3; Abstr. 52):54–5. https://doi.org/10.1093/jas/skz258.110.
Article
Google Scholar
Mueller ML, Cole JB, Sonstegard TS, Van Eenennaam AL. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J Dairy Sci. 2019;102:4215–26. https://doi.org/10.3168/jds.2018-15892.
Article
CAS
PubMed
Google Scholar
Mueller ML, Cole JB, Connors NK, Johnston DJ, Randhawa IAS, Van Eenennaam AL. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the tropically adapted Australian Beef Cattle Population. Front Genet. 2021;12:593154. https://doi.org/10.3389/fgene.2021.593154.
Article
PubMed
PubMed Central
Google Scholar
Murray JD, Maga EA. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference. Transgenic Res. 2016;25:321–7. https://doi.org/10.1007/s11248-016-9927-7.
Article
CAS
PubMed
Google Scholar
National Academies of Sciences, Engineering, and Medicine. Regulation of current and future genetically engineered crops. In: Genetically engineered crops: experiences and prospects. Washington: The National Academies Press; 2016. p. 455–522. https://doi.org/10.17226/23395.
Nickel R. Death knell may sound for Canada's GMO pigs. Reuters. 2012. https://www.reuters.com/article/canada-us-gmo-canada-pigs-idCABRE83110320120402. Accessed 19 Nov 2021.
Patel E. Scientists in Africa explore use of surrogate sires to improve small ruminant breeds. ILRI News. 2021. https://www.ilri.org/news/scientists-africa-explore-use-%E2%80%98surrogate-sires%E2%80%99-improve-small-ruminant-breeds. Accessed 24 Nov 2021.
Pryce J, de Haas Y. Genetic selection for dairy cow welfare and resilience to climate change. In: Webster J, editor. Achieving sustainable production of milk: volume 3: Dairy herd management and welfare. Cambridge: Burleigh Dodds Science Publishing Ltd; 2017. p. 81–102. https://doi.org/10.19103/as.2016.0006.04.
Chapter
Google Scholar
Pursel V, Rexroad C. Recent progress in the transgenic modification of swine and sheep. Mol Reprod Dev. 1993;36:251.
Article
CAS
Google Scholar
Pursel VG, Mitchell AD, Bee G, Elsasser TH, McMurtry JP, Wall RJ, Coleman ME, Schwartz RJ. Growth and tissue accretion rates of swine expressing an insulin-like growth factor I transgene. Anim Biotechnol. 2004;15:33–45. https://doi.org/10.1081/ABIO-120029812.
Article
CAS
PubMed
Google Scholar
Qaim M. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl Econ Perspect Policy. 2020;42:129–50. https://doi.org/10.1002/aepp.13044.
Article
Google Scholar
Ramsay TG, Powell A, Park C, Park K, Telugu B. CRISPR/cas mediated gene-targeting to reduce milk allergens and mastitis in goats. Accession no: 0432327. USDA National Institute of Food and Agriculture, Washington, DC. 2017. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=0432327)&format=WEBLINK. Accessed 6 Dec 2021.
Regional Fish Institute. 2021. https://regional.fish/en/. Accessed 6 Dec 2021.
Rexroad C, Vallet J, Matukumalli LK, Reecy J, Bickhart D, Blackburn H, Boggess M, Cheng H, Clutter A, Cockett N, Ernst C, Fulton JE, Liu J, Lunney J, Neibergs H, Purcell C, Smith TPL, Sonstegard T, Taylor J, Telugu B, Van Eenennaam A, Van Tassell CP, Wells K. Genome to phenome: improving animal health, production, and well-being—a new USDA Blueprint for Animal Genome Research 2018–2027. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00327.
Article
PubMed
PubMed Central
Google Scholar
Richt J, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y. Production of cattle lacking prion protein. Nat Biotechnol. 2007;25:132–8. https://doi.org/10.1038/nbt1271.
Article
CAS
PubMed
Google Scholar
Rowley LG. Public Agriculture Research: the United States can’t catch up by slowing down. 2020. The Lugar Center. https://www.thelugarcenter.org/newsroom-news-409.html. Accessed 6 Dec 2021.
Scott M. Development and evaluation of transgenic insect strains for genetic control programs. Accession no: 1005012. USDA National Institute of Food and Agriculture, Washington, DC. 2014. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1005012)&format=WEBLINK. Accessed 6 Dec 2021.
Scott M. Development and evaluation of safeguards for conditional suppressive gene drives for spotted wing drosophila and the new world screwworm. Accession no: 1010437. USDA National Institute of Food and Agriculture, Washington, DC. 2016. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1010437)&format=WEBLINK. Accessed 6 Dec 2021.
Scott M. Development of novel systems for enhanced genetic control of the new world screwworm. Accession no: 1020092. USDA National Institute of Food and Agriculture, Washington, DC. 2019. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1020092)&format=WEBLINK. Accessed 6 Dec 2021.
Scott M. Development and evaluation of y-linked gene editors for suppression of populations of spotted wing drosophila and the new world screwworm. Accession no: 1023744. USDA National Institute of Food and Agriculture, Washington, DC. 2020. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1023744)&format=WEBLINK. Accessed 6 Dec 2021.
Scott M. Assessing the influence of genetic background on the efficacy of drosophila suzukii male-only and gene drive strains. Accession no: 1027009. USDA National Institute of Food and Agriculture, Washington, DC. 2021. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1027009)&format=WEBLINK. Accessed 6 Dec 2021.
Siegel PB, Barger K, Siewerdt F. Limb health in broiler breeding: history using genetics to improve welfare. J Appl Poult Res. 2019;28:785–90. https://doi.org/10.3382/japr/pfz052.
Article
Google Scholar
Singh P, Ali SA. Impact of CRISPR-Cas9-based genome engineering in farm animals. Vet Sci. 2021;8:122. https://doi.org/10.3390/vetsci8070122.
Article
PubMed
PubMed Central
Google Scholar
Smith V, Wesseler JHH, Zilberman D. New plant breeding technologies: an assessment of the political economy of the regulatory environment and implications for sustainability. Sustainability. 2021;13:3687.
Article
Google Scholar
Sonstegard T. Development of tools for accelerating genetic improvement of livestock. (Accession no. 1008017). USDA National Institute of Food and Agriculture, Washington, DC. 2016. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1008017)&format=WEBLINK. Accessed 23 Nov 2021.
Sonstegard T. Tri-partite collaborative: targeted genome editing to understand and enhance genetic resistance to bovine tuberculosis in domestic cattle populations (target-tb). Accession no: 1015508. USDA National Institute of Food and Agriculture, Washington, DC. 2018. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1015508)&format=WEBLINK. Accessed 6 Dec 2021.
Sonstegard T, Murray JD. Improvement of diary animal well-being by genetic dehorning. Accession no: 1005738. USDA National Institute of Food and Agriculture, Washington, DC. 2015. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1005738)&format=WEBLINK. Accessed 6 Dec 2021.
Tallapragada M, Hardy BW, Lybrand E, Hallman WK. Impact of abstract versus concrete conceptualization of genetic modification (GM) technology on public perceptions. Risk Anal. 2021;41:976–91. https://doi.org/10.1111/risa.13591.
Article
PubMed
Google Scholar
Tan W, Proudfoot C, Lillico SG. Whitelaw CBA, Gene targeting, genome editing: from Dolly to editors. Transgenic Res. 2016;25:273–87. https://doi.org/10.1007/s11248-016-9932-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor JB. Prelude to the Tremendous Targhee: the history behind the history. In: Targhee Talk: the Newsletter of the U.S. Targhee Sheep Association. p. 9–11. 2018. http://www.ustargheesheep.org/wp-content/uploads/2018/10/targheetalk55_oct2018.pdf. Accessed 23 Nov 2021.
Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global regulation of genetically modified crops amid the gene edited crop boom—a review. Front Plant Sci. 2021;12:258.
Article
Google Scholar
Unified Website for Biotechnology Regulation. About the coordinated framework. 2021. https://usbiotechnologyregulation.mrp.usda.gov/biotechnologygov/about. Accessed 6 Dec 2021.
Upperman LR, Kinghorn BP, MacNeil MD, Eenennaam AL. Management of lethal recessive alleles in beef cattle through the use of mate selection. Genet Sel Evol. 2019;51:36. https://doi.org/10.1186/s12711-019-0477-3.
Article
PubMed
PubMed Central
Google Scholar
USDA. USDA science blueprint: a roadmap for USDA Science from 2020 to 2025. 2019. https://www.usda.gov/sites/default/files/documents/usda-science-blueprint.pdf. Accessed 6 Dec 2021.
USDA. FY2021 budget summary. 2021. https://www.usda.gov/sites/default/files/documents/usda-fy2021-budget-summary.pdf. Accessed 6 Dec 2021.
USDA-APHIS: “Am I Regulated” Process. 2020. https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/am_i_regulated. Accessed 16 Nov 2021.
USDA-APHIS. Animal and Plant Health Inspection Service. Confirmation Request Process. 2021. https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/permits-notifications-petitions/confirmations. Accessed 16 Nov 2021.
USDA-ARS. ARS strategies to benefit aquaculture industry. AgResearch Magazine. 2018;66(1). https://agresearchmag.ars.usda.gov/2018/jan/industry/. Accessed 26 Jan 2022.
USDA-ARS. Research Project # 8030-31000-005-000-D: Genetic Improvement of North American Atlantic Salmon and the Eastern Oyster for Aquaculture Production. 2019. https://www.ars.usda.gov/research/project/?accnNo=437429. Accessed 26 Jan 2022.
USDA-ARS. Agricultural Research Service—about ARS. 2021. https://www.ars.usda.gov/about-ars. Accessed 16 Nov 2021.
USDA-ERS. Livestock, dairy, and poultry outlook: February 2022. LDP-M-332. USDA, Economic Research Service. https://www.ers.usda.gov/webdocs/outlooks/103284/ldp-m-332.pdf?v=12.4. Accessed 16 Feb 2022.
USDA-FAS. Global Agriculture Information Network (GAIN) database. European Union: agricultural biotechnology annual. GAIN Report Number: E42020-0101. 31 Dec 2020. https://www.fas.usda.gov/data/european-union-agricultural-biotechnology-annual-0. Accessed 5 Dec 2021.
USDA-FAS. Global Agricultural Information Network (GAIN) database. MHLW Publishes Considerations for Genome Edited Fish. GAIN Report Number: JA2021-0132. 28 Sept 2021. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=MHLW%20Publishes%20Considerations%20for%20Genome%20Edited%20Fish_Tokyo_Japan_09-22-2021. Accessed 16 Nov 2021.
USDA-NIFA: Agriculture and Food Research Initiative (AFRI). 2021a. https://nifa.usda.gov/program/agriculture-and-food-research-initiative-afri. Accessed 05 Dec 2021.
USDA-NIFA. National Institute of Food and Agriculture—who we are. 2021b. https://www.nifa.usda.gov/who-we-are. Accessed 16 Nov 2021.
U.S. House. 99th Congress: H.R. 2100: Food Security Act of 1985. Washington: US Government Publishing Office. 1985. https://www.govinfo.gov/content/pkg/STATUTE-99/pdf/STATUTE-99-Pg1354.pdf. Accessed 5 Dec 2021.
U.S. House. 105th Congress: S. 1150 (H.R. 2534): Research, Extension, and Education Reform Act of 1998. Sec. 401. Washington: US Government Publishing Office. 1998. https://www.govinfo.gov/content/pkg/PLAW-105publ185/pdf/PLAW-105publ185.pdf. Accessed 5 Dec 2021.
U.S. House. 107th Congress: H.R. 2646: Farm Security and Rural Investment Act of 2002. Sec. 401. Washington: US Government Publishing Office. 2002. https://www.govinfo.gov/content/pkg/PLAW-107publ171/pdf/PLAW-107publ171.pdf. Accessed 5 Dec 2021.
U.S. House. 110th Congress: H.R. 2419: Food, Conservation, and Energy Act of 2008. Washington: US Government Publishing Office. 2008. https://www.govinfo.gov/content/pkg/PLAW-110publ234/pdf/PLAW-110publ234.pdf. Accessed 5 Dec 2021.
U.S. House. 113th Congress: H.R. 2642: Agricultural Act of 2014. Washington: US Government Publishing Office. 2014. Sec. 1433. https://www.govinfo.gov/content/pkg/PLAW-113publ79/html/PLAW-113publ79.htm. Accessed 5 Dec 2021.
U.S. House. 114th Congress: H.R. 2029: Consolidated Appropriations Act, 2016. Sec. 761. Washington: US Government Publishing Office. 2015. https://www.govinfo.gov/content/pkg/PLAW-114publ113/pdf/PLAW-114publ113.pdf. Accessed 5 Dec 2021.
U.S. House. 115th Congress: H.R. 244: Consolidated Appropriations Act, 2017. Sec. 761. Washington: US Government Publishing Office. 2017. https://www.govinfo.gov/content/pkg/PLAW-114publ113/pdf/PLAW-114publ113.pdf. Accessed 5 Dec 2021.
U.S. House. 115th Congress: H.R. 2: Agriculture Improvement Act of 2018a. Sec. 7132; amended Sec. 1473H. Washington: US Government Publishing Office. 2018a. https://www.govinfo.gov/content/pkg/PLAW-115publ141/pdf/PLAW-115publ141.pdf. Accessed 5 Dec 2021.
U.S. House. 115th Congress: H.R. 1625: Consolidated Appropriations Act, 2018b. Sec. 770. Washington: US Government Publishing Office. 2018b. https://www.govinfo.gov/content/pkg/PLAW-115publ141/pdf/PLAW-115publ141.pdf. Accessed 5 Dec 2021.
U.S. House. 116th Congress: H.J. Res. 31: Consolidated Appropriations Act, 2019. Sec. 776. Washington: US Government Publishing Office. 2019. https://www.govinfo.gov/content/pkg/PLAW-116publ6/pdf/PLAW-116publ6.pdf Accessed 5 Dec 2021.
Vallejo RL, Leeds TD, Gao G, Parsons JE, Martin KE, Evenhuis JP, Fragomeni BO, Wiens GD, Palti Y. Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genet Sel Evol. 2017;49:17. https://doi.org/10.1186/s12711-017-0293-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Eenennaam AL. Genetic modification of food animals. Curr Opin Biotechnol. 2017a;44:27–34. https://doi.org/10.1016/j.copbio.2016.10.007.
Article
CAS
PubMed
Google Scholar
Van Eenennaam AL. Comparative evaluation of the phenotype, genome and animal products derived from offspring of a genome edited, hornless bull and controls. Accession no: 1013722. USDA National Institute of Food and Agriculture, Washington, DC. 2017b. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1013722)&format=WEBLINK. Accessed 6 Dec 2021.
Van Eenennaam AL. Method for in vivo x or y sperm selection. Accession no: 1015727. USDA National Institute of Food and Agriculture, Washington, DC. 2018. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=1015727)&format=WEBLINK. Accessed 6 Dec 2021.
Van Eenennaam AL, De Figueiredo SF, Trott JF, Zilberman D. Genetic engineering of livestock: the opportunity cost of regulatory delay. Annu Rev Anim Biosci. 2021;9:453–78.
Article
Google Scholar
Vincent AL. Generation of zoonotic influenza resistant recombinant pigs via site-directed technology. Accession no: 0437653. USDA National Institute of Food and Agriculture, Washington, DC. 2019. https://cris.nifa.usda.gov/cgi-bin/starfinder/0?path=fastlink1.txt&id=anon&pass=&search=(AN=0437653)&format=WEBLINK. Accessed 6 Dec 2021.
Walker T. Hybrid catfish a huge success. Aquaculture North America. 2015. https://www.aquaculturenorthamerica.com/hybrid-catfish-a-huge-success-1254/. Accessed 23 Nov 2021.
Wall RJ, Hyman P, Kerr D, Pintado B, Wells K. Transgenic animal technology. J Androl. 1997a;18:236–9.
CAS
PubMed
Google Scholar
Wall RJ, Kerr DE, Bondioli KR. Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci. 1997b;80:2213–24. https://doi.org/10.3168/jds.S0022-0302(97)76170-8.
Article
CAS
PubMed
Google Scholar
Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, Wells KD, Talbot N, Hawk HW. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol. 2005;23:445–51.
Article
CAS
Google Scholar
Wheeler MB. Transgenic animals in agriculture. Nat Educ Knowl. 2013;4:1.
Google Scholar
Whelan AI, Lema MA. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food. 2015;6:253–65. https://doi.org/10.1080/21645698.2015.1114698.
Article
PubMed
PubMed Central
Google Scholar
Whelan AI, Gutti P, Lema MA. Gene editing regulation and innovation economics. Front Bioeng Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00303.
Article
PubMed
PubMed Central
Google Scholar
Whitelaw CBA, Sheets TP, Lillico SG, Telugu BP. Engineering large animal models of human disease. J Pathol. 2016;238:247–56. https://doi.org/10.1002/path.4648 (Epub 2015 Nov 28).
Article
PubMed
Google Scholar
Wiggans GB, Cole JB, Hubbard SM, Sonstegard TS. Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci. 2017;5:309–27. https://doi.org/10.1146/annurev-animal-021815-111422.
Article
PubMed
Google Scholar
Williams JO. Mule Production. USDA Farmers’ Bulletin No. 1341. 1923. https://naldc.nal.usda.gov/download/5420608/PDF. Accessed 16 Nov 2021.