Alarcon P, Rushton J, Wieland B. Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England—an economic disease model. Prev Vet Med. 2013;110(2):88–102.
Article
PubMed
PubMed Central
Google Scholar
Albers GAA, Gray GD, Piper LR, Barker JSF, Le Jambre LF, Barger IA. The genetics of resistance and resilience to Haemonchus contortus infection in young merino sheep. Int J Parasitol. 1987;17(7):1355–63.
Article
CAS
PubMed
Google Scholar
Anacleto O, Cabaleiro S, Villanueva B, Saura M, Houston RD, Woolliams JA, et al. Genetic differences in host infectivity affect disease spread and survival in epidemics. Sci Rep. 2019;9(1):4924.
Article
PubMed
PubMed Central
Google Scholar
Augustino SMA, Xu Q, Liu X, Liu L, Zhang Q, Yu Y. Transcriptomic study of porcine small intestine epithelial cells reveals important genes and pathways associated with susceptibility to Escherichia coli F4ac diarrhea. Front Genet. 2020;11:68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayres JS, Schneider DS. Tolerance of infections. Annu Rev Immunol. 2012;30(1):271–94.
Article
CAS
PubMed
Google Scholar
Bai X, Putz AM, Wang Z, Fortin F, Harding JCS, Dyck MK, et al. Exploring phenotypes for disease resilience in pigs using complete blood count data from a natural disease challenge model. Front Genet. 2020;11:216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao W-B, Ye L, Pan Z-Y, Zhu J, Zhu G-Q, Huang X-G, et al. Beneficial genotype of swine FUT1 gene governing resistance to E. coli F18 is associated with important economic traits. J Genet. 2011;90(2):315–8.
Article
PubMed
Google Scholar
Bao W-B, Ye L, Zi C, Su X-M, Pan Z-Y, Zhu J, et al. Study on the age-dependent tissue expression of FUT1 gene in porcine and its relationship to E. coli F18 receptor. Gene. 2012;497(2):336–9.
Article
CAS
PubMed
Google Scholar
Bastiaansen JWM, Bovenhuis H, Groenen MAM, Megens H-J, Mulder HA. The impact of genome editing on the introduction of monogenic traits in livestock. Genet Sel Evol. 2018;50(1):18.
Article
PubMed
PubMed Central
Google Scholar
Benjamin M, Yik S. Precision livestock farming in swine welfare: a review for swine practitioners. Animals. 2019;9(4):133.
Article
PubMed Central
Google Scholar
Berghof TVL, Bovenhuis H, Mulder HA. Body weight deviations as indicator for resilience in layer chickens. Front Genet. 2019a;10:1216.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berghof TVL, Poppe M, Mulder HA. Opportunities to improve resilience in animal breeding programs. Front Genet. 2019b;9:692.
Article
PubMed
PubMed Central
Google Scholar
Berthe F. The global economic impact of ASF. Panorama 2020-1: African swine fever: responding to the global threat. https://oiebulletin.com/?panorama=02-2-2-2020-1-economic. Accessed 24 July 2020.
Bishop SC. A consideration of resistance and tolerance for ruminant nematode infections. Front Genet. 2012;3:168.
Article
PubMed
PubMed Central
Google Scholar
Bishop SC, MacKenzie KM. Genetic management strategies for controlling infectious diseases in livestock populations. Genet Sel Evol. 2003;35(Suppl 1):S3.
Article
PubMed
PubMed Central
Google Scholar
Bishop SC, Morris CA. Genetics of disease resistance in sheep and goats. Small Ruminant Res. 2007;70(1):48–59.
Article
Google Scholar
Bishop SC, Stear MJ. Modeling of host genetics and resistance to infectious diseases: understanding and controlling nematode infections. Vet Parasitol. 2003;115(2):147–66.
Article
CAS
PubMed
Google Scholar
Bishop SC, Woolliams JA. Genomics and disease resistance studies in livestock. Livest Sci. 2014;166:190–8.
Article
PubMed
PubMed Central
Google Scholar
Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173(1):122–30.
Article
CAS
PubMed
Google Scholar
Boddicker N, Waide EH, Rowland RRR, Lunney JK, Garrick DJ, Reecy JM, et al. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J Anim Sci. 2012;90(6):1733–46.
Article
CAS
PubMed
Google Scholar
Boddicker NJ, Bjorkquist A, Rowland RR, Lunney JK, Reecy JM, Dekkers JC. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol. 2014a;46(1):18.
Article
PubMed
PubMed Central
Google Scholar
Boddicker NJ, Garrick DJ, Rowland RRR, Lunney JK, Reecy JM, Dekkers JCM. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim Genet. 2014b;45(1):48–58.
Article
CAS
PubMed
Google Scholar
Brunberg E, Jensen P, Isaksson A, Keeling LJ. Brain gene expression differences are associated with abnormal tail biting behavior in pigs. Genes Brain Behav. 2013;12(2):275–81.
Article
CAS
PubMed
Google Scholar
Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017;13(2): e1006206.
Article
PubMed
PubMed Central
Google Scholar
Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol. 2018;92(16):e00415-18.
Article
PubMed
PubMed Central
Google Scholar
Calvert JG, Slade DE, Shields SL, Jolie R, Mannan RM, Ankenbauer RG, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol. 2007;81(14):7371–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrillo-Bustamante P, Keşmir C, de Boer RJ. A coevolutionary arms race between hosts and viruses drives polymorphism and polygenicity of NK cell receptors. Mol Biol Evol. 2015;32(8):2149–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carroll D. Collateral damage: benchmarking off-target effects in genome editing. Genome Biol. 2019;20(1):114.
Article
PubMed
PubMed Central
Google Scholar
Chen Y, Cortes LET, Ashley C, Putz AM, Lim K-S, Dyck MK, et al. The genetic basis of natural antibody titers of young healthy pigs and relationships with disease resilience. BMC Genom. 2020;21(1):648.
Article
CAS
Google Scholar
Cheng J, Putz AM, Harding JCS, Dyck MK, Fortin F, Plastow GS, et al. Genetic analysis of disease resilience in wean-to-finish pigs from a natural disease challenge model. J Anim Sci. 2020;98(8):skaa244.
Article
PubMed
PubMed Central
Google Scholar
Clapperton M, Glass EJ, Bishop SC. Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance. Animal. 2008;2(11):1575–84.
Article
CAS
PubMed
Google Scholar
Clapperton M, Diack AB, Matika O, Glass EJ, Gladney CD, Mellencamp MA, et al. Traits associated with innate and adaptive immunity in pigs: heritability and associations with performance under different health status conditions. Genet Sel Evol. 2009;41(1):54.
Article
PubMed
PubMed Central
Google Scholar
Colditz IG, Hine BC. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci. 2016;56(12):1961–83.
Article
Google Scholar
Cross AJ, Brown-Brandl TM, Keel BN, Cassady JP, Rohrer GA. Feeding behavior of grow-finish swine and the impacts of heat stress. Transl Animal Sci. 2020;4(2):986–92.
Article
Google Scholar
Cunnington AJ. The importance of pathogen load. PLoS Pathog. 2015;11(1): e1004563.
Article
PubMed
PubMed Central
Google Scholar
Cwynar P, Stojkov J, Wlazlak K. African swine fever status in Europe. Viruses. 2019;11(4):310.
Article
PubMed Central
Google Scholar
David I, Canario L, Combes S, Demars J. Intergenerational transmission of characters through genetics, epigenetics, microbiota, and learning in livestock. Front Genet. 2019;10:1058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies G, Genini S, Bishop SC, Giuffra E. An assessment of opportunities to dissect host genetic variation in resistance to infectious diseases in livestock. Animal. 2009;3(3):415–36.
Article
CAS
PubMed
Google Scholar
Dervishi E, Yang T, Dyck MK, Harding JCS, Fortin F, Canada P, et al. Heritability and genetic correlations of plasma metabolites of pigs with production, resilience and carcass traits under natural polymicrobial disease challenge. Sci Rep. 2021;11(1):20628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon LK, Sun H, Roberts H. African swine fever. Antivir Res. 2019;165:34–41.
Article
CAS
PubMed
Google Scholar
Djurković-Djaković O, Bobić B, Nikolić A, Klun I, Dupouy-Camet J. Pork as a source of human parasitic infection. Clin Microbiol Infect. 2013;19(7):586–94.
Article
PubMed
Google Scholar
Doeschl-Wilson AB, Kyriazakis I. Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens? Front Genet. 2012;3:272.
Article
PubMed
PubMed Central
Google Scholar
Doeschl-Wilson AB, Kyriazakis I, Vincent A, Rothschild MF, Thacker E, Galina-Pantoja L. Clinical and pathological responses of pigs from two genetically diverse commercial lines to porcine reproductive and respiratory syndrome virus infection1. J Anim Sci. 2009;87(5):1638–47.
Article
CAS
PubMed
Google Scholar
Doeschl-Wilson AB, Bishop SC, Kyriazakis I, Villanueva B. Novel methods for quantifying individual host response to infectious pathogens for genetic analyses. Front Genet. 2012a;3:266.
Article
PubMed
PubMed Central
Google Scholar
Doeschl-Wilson AB, Villanueva B, Kyriazakis I. The first step toward genetic selection for host tolerance to infectious pathogens: obtaining the tolerance phenotype through group estimates. Front Genet. 2012b;3:265.
Article
PubMed
PubMed Central
Google Scholar
Dong J, Yu L, Wang P, Zhang L, Liu Y, Liang P, et al. A new recombined porcine reproductive and respiratory syndrome virus virulent strain in China. J Vet Sci. 2018;19(1):89–98.
Article
PubMed
PubMed Central
Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
Article
PubMed
Google Scholar
Drummond JG, Curtis SE, Simon J, Norton HW. Effects of aerial ammonia on growth and health of young pigs. J Anim Sci. 1980;50(6):1085–91.
Article
Google Scholar
Drummond JG, Curtis SE, Simon J, Norton HW. Effects of atmospheric ammonia on young pigs experimentally infected with Ascaris suum. Am J Vet Res. 1981;42(6):969–74.
CAS
PubMed
Google Scholar
Dunkelberger JR, Mathur PK, Lopes MS, Knol EF, Dekkers JCM. A major gene for host response to porcine reproductive and respiratory syndrome is not unfavorably associated with overall performance under nonchallenging conditions in commercial pig lines. J Anim Sci. 2017;95(7):2838–47.
Article
CAS
PubMed
Google Scholar
Edfors-Lilja I, Petersson H, Gahne B. Performance of pigs with or without the intestinal receptor for Escherichia coli K88. Anim Sci. 1986;42(3):381–7.
Article
Google Scholar
Elgersma GG, de Jong G, van der Linde R, Mulder HA. Fluctuations in milk yield are heritable and can be used as a resilience indicator to breed healthy cows. J Dairy Sci. 2018;101(2):1240–50.
Article
CAS
PubMed
Google Scholar
Evangelopoulou G, Kritas S, Christodoulopoulos G, Burriel AR. The commercial impact of pig Salmonella spp. infections in border-free markets during an economic recession. Vet World. 2015;8(3):257–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flori L, Gao Y, Laloë D, Lemonnier G, Leplat J-J, Teillaud A, et al. Immunity traits in pigs: substantial genetic variation and limited covariation. PLoS ONE. 2011;6(7): e22717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friggens NC, Blanc F, Berry DP, Puillet L. Review: Deciphering animal robustness. A synthesis to facilitate its use in livestock breeding and management. Animal. 2017;11(12):2237–51.
Article
CAS
PubMed
Google Scholar
Fu W-X, Liu Y, Lu X, Niu X-Y, Ding X-D, Liu J-F, et al. A genome-wide association study identifies two novel promising candidate genes affecting Escherichia coli F4ab/F4ac susceptibility in swine. PLoS ONE. 2012;7(3): e32127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabler NK, Pearce SC. The impact of heat stress on intestinal function and productivity in grow-finish pigs. Anim Prod Sci. 2015;55(12):1403–10.
Article
Google Scholar
Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V. Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med. 2009;23(6):1151–63.
Article
CAS
PubMed
Google Scholar
Glass EJ. The molecular pathways underlying host resistance and tolerance to pathogens. Front Genet. 2012;3:263.
Article
PubMed
PubMed Central
Google Scholar
Hanke D, Pohlmann A, Sauter-Louis C, Höper D, Stadler J, Ritzmann M, et al. Porcine epidemic diarrhea in Europe: in-detail analyses of disease dynamics and molecular epidemiology. Viruses. 2017;9(7):177.
Article
PubMed Central
Google Scholar
Harlizius B, Mathur P, Knol EF. Breeding for resilience: new opportunities in a modern pig breeding program. J Anim Sci. 2020;98(Supplement_1):S150-4.
Article
PubMed
PubMed Central
Google Scholar
Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive ratio. J Roy Soc Interface. 2005;2(4):281–93.
Article
CAS
Google Scholar
Hill A, Simons R, Ramnial V, Tennant J, Denman S, Cheney T, et al. Quantitative microbiological risk assessment on Salmonella in slaughter and breeder pigs: final report. EFSA Supporting Publ. 2010;7(4).
Hine B, Mallard B, Ingham A, Colditz I. Immune competence in livestock. In: Hermesch S, Dominik S, editors. Breeding focus 2014—improving resilience. Armidale: Animal Genetics and Breeding Unit University of New England; 2014. p. 49–64.
Google Scholar
Holtkamp DJ, Kliebenstein JB, Neumann EJ, Zimmerman JJ, Rotto HF, Yoder TK, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 2013;21:72–84.
Google Scholar
Honish L, Punja N, Nunn S, Nelson D, Hislop N, Gosselin G, et al. Escherichia coli O157:H7 infections associated with contaminated pork products—Alberta, Canada, July–October 2014. Morb Mortal Wkly Rep. 2017;65(52):1477–81.
Article
Google Scholar
Kavanová L, Matiašková K, Levá L, Štěpánová H, Nedbalcová K, Matiašovic J, et al. Concurrent infection with porcine reproductive and respiratory syndrome virus and Haemophilus parasuis in two types of porcine macrophages: apoptosis, production of ROS and formation of multinucleated giant cells. Vet Res. 2017;48(1):28.
Article
PubMed
PubMed Central
Google Scholar
Knap PW, Bishop SC. Relationships between genetic change and infectious disease in domestic livestock. Bsap Occas Publ. 2000;27:65–80.
Article
Google Scholar
Kasper C, Ribeiro D, de Almeida AM, Larzul C, Liaubet L, Murani E. Omics application in animal science—a special emphasis on stress response and damaging behaviour in pigs. Genes. 2020;11(8):920.
Article
CAS
PubMed Central
Google Scholar
Kause A. Genetic analysis of tolerance to infections using random regressions: a simulation study. Genet Res. 2011;93(4):291–302.
Article
Google Scholar
Kause A, Odegård J. The genetic analysis of tolerance to infections: a review. Front Genet. 2012;3:262.
Article
PubMed
PubMed Central
Google Scholar
Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE. 2008;3(8): e3064.
Article
PubMed
PubMed Central
Google Scholar
Kimman TG, Cornelissen LA, Moormann RJ, Rebel JMJ, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine. 2009;27(28):3704–18.
Article
CAS
PubMed
Google Scholar
Kitikoon P, Vincent AL, Jones KR, Nilubol D, Yu S, Janke BH, et al. Vaccine efficacy and immune response to swine influenza virus challenge in pigs infected with porcine reproductive and respiratory syndrome virus at the time of SIV vaccination. Vet Microbiol. 2009;139(3–4):235–44.
Article
CAS
PubMed
Google Scholar
Knap PW. Breeding robust pigs. Aust J Exp Agric. 2005;45(8):763.
Article
Google Scholar
Knap PW, Doeschl-Wilson A. Why breed disease-resilient livestock, and how? Genet Sel Evol. 2020;52(1):60.
Article
PubMed
PubMed Central
Google Scholar
Knol EF, Nielsen B, Knap PW. Genomic selection in commercial pig breeding. Anim Front. 2016;6(1):15–22.
Article
Google Scholar
Koltes JE, Fritz-Waters E, Eisley CJ, Choi I, Bao H, Kommadath A, et al. Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. BMC Genom. 2015;16(1):412.
Article
Google Scholar
Koltes JE, Cole JB, Clemmens R, Dilger RN, Kramer LM, Lunney JK, et al. A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Front Genet. 2019;10:1197.
Article
PubMed
PubMed Central
Google Scholar
Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman H-J, Law SKA, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201.
Article
CAS
PubMed
Google Scholar
Lammie SL, Hughes JM. Antimicrobial resistance, food safety, and one health: the need for convergence. Annu Rev Food Sci Te hnol. 2015;7(1):1–26.
Google Scholar
Lara-Romero R, Gómez-Núñez L, Cerriteño-Sánchez JL, Márquez-Valdelamar L, Mendoza-Elvira S, Ramírez-Mendoza H, et al. Molecular characterization of the spike gene of the porcine epidemic diarrhea virus in Mexico, 2013–2016. Virus Genes. 2018;54(2):215–24.
Article
CAS
PubMed
Google Scholar
Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome. 2019;7(1):92.
Article
PubMed
PubMed Central
Google Scholar
Little TJ, Shuker DM, Colegrave N, Day T, Graham AL. The coevolution of virulence: tolerance in perspective. PLoS Pathog. 2010;6(9): e1001006.
Article
PubMed
PubMed Central
Google Scholar
Lough G, Kyriazakis I, Bergmann S, Lengeling A, Doeschl-Wilson AB. Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome. Proc R Soc B Biol Sci. 2015;282(1819):20152151.
Article
Google Scholar
Lough G, Rashidi H, Kyriazakis I, Dekkers JCM, Hess A, Hess M, et al. Use of multi-trait and random regression models to identify genetic variation in tolerance to porcine reproductive and respiratory syndrome virus. Genet Sel Evol. 2017;49(1):37.
Article
PubMed
PubMed Central
Google Scholar
Lough G, Hess A, Hess M, Rashidi H, Matika O, Lunney JK, et al. Harnessing longitudinal information to identify genetic variation in tolerance of pigs to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol. 2018;50(1):50.
Article
PubMed
PubMed Central
Google Scholar
Lv C, Xiao Y, Li X, Tian K. Porcine epidemic diarrhea virus: current insights. Virus Adapt Treat. 2016;8:1–12.
CAS
Google Scholar
Margolis E, Levin B. Evolution of bacterial-host interactions: virulence and the immune overresponse. In: Baquero F, Cassell G, Nombela C, Gutiérrez-Fuentes J, editors. Evolutionary biology of bacterial and fungal pathogens. Washington, D.C: ASM Press; 2008.
Google Scholar
Mason-D’Croz D, Bogard JR, Herrero M, Robinson S, Sulser TB, Wiebe K, et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat Food. 2020;1(4):221–8.
Article
PubMed
PubMed Central
Google Scholar
Mayorga EJ, Renaudeau D, Ramirez BC, Ross JW, Baumgard LH. Heat stress adaptations in pigs. Anim Front. 2018;9(1):54–61.
Article
PubMed
PubMed Central
Google Scholar
McCarville J, Ayres J. Disease tolerance: concept and mechanisms. Curr Opin Immunol. 2018;50:88–93.
Article
CAS
PubMed
Google Scholar
Medzhitov R. Damage control in host–pathogen interactions: Fig. 1. Proc Natl Acad sci. 2009;106(37):15525–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meijerink E, Fries R, Vögeli P, Masabanda J, Wigger G, Stricker C, et al. Two α(1,2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm Genome. 1997;8(10):736–41.
Article
CAS
PubMed
Google Scholar
Meijerink E, Neuenschwander S, Fries R, Dinter A, Bertschinger HU, Stranzinger G, et al. A DNA polymorphism influencing α(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics. 2000;52(1):129–36.
Article
CAS
PubMed
Google Scholar
Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller UG, Sachs JL. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 2015;23(10):606–17.
Article
CAS
PubMed
Google Scholar
Mulder HA, Rashidi H. Selection on resilience improves disease resistance and tolerance to infections. J Anim Sci. 2017;95(8):3346.
CAS
PubMed
Google Scholar
Munyaka PM, Kommadath A, Fouhse J, Wilkinson J, Diether N, Stothard P, et al. Characterization of whole blood transcriptome and early-life fecal microbiota in high and low responder pigs before, and after vaccination for Mycoplasma hyopneumoniae. Vaccine. 2019;37:1743–55.
Article
CAS
PubMed
Google Scholar
Munyaka PM, Blanc F, Estellé J, Lemonnier G, Leplat J-J, Rossignol M-N, et al. Discovery of predictors of mycoplasma hyopneumoniae vaccine response efficiency in pigs: 16S rRNA gene fecal microbiota analysis. Microorganisms. 2020;8(8):1151.
Article
CAS
PubMed Central
Google Scholar
Nakov D, Hristov S, Stankovic B, Pol F, Dimitrov I, Ilieski V, et al. Methodologies for assessing disease tolerance in pigs. Front Vet Sci. 2019;5:329.
Article
PubMed
PubMed Central
Google Scholar
Nan Y, Wu C, Gu G, Sun W, Zhang Y-J, Zhou E-M. Improved vaccine against PRRSV: current progress and future perspective. Front Microbiol. 2017;8:1635.
Article
PubMed
PubMed Central
Google Scholar
Neeteson-van Nieuwenhoven A-M, Knap P, Santiago A. The role of sustainable commercial pig and poultry breeding for food security. Anim Front. 2013;3(1):52–7.
Article
Google Scholar
Neethirajan S. Recent advances in wearable sensors for animal health management. Sens Bio-Sens Res. 2017;12:15–29.
Article
Google Scholar
Netherton CL, Goatley LC, Reis AL, Portugal R, Nash RH, Morgan SB, et al. Identification and immunogenicity of African swine fever virus antigens. Front Immunol. 2019;10:1318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman S, Wang L, Anderson J, Casey D. Utilizing crossbred records to increase accuracy of breeding values in pigs. 2010. http://wcgalp.org/system/files/proceedings/2010/utilizing-crossbred-records-increase-accuracy-breeding-values-pigs.pdf.
Niederwerder MC, Hesse RA. Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada. Transbound Emerg Dis. 2018;65(3):660–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nieuwenhuis N, Duinhof TF, van Nes A. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet Rec. 2012;170(9):225.
Article
CAS
PubMed
Google Scholar
O’Neill J. The review on antimicrobial resistance. 2016. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf. Accessed July 2021.
Ojkic D, Hazlett M, Fairles J, Marom A, Slavic D, Maxie G, et al. The first case of porcine epidemic diarrhea in Canada. Can Vet J La Revue Vétérinaire Can. 2015;56(2):149–52.
Google Scholar
Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev. 2011;12(2):133–48.
Article
CAS
PubMed
Google Scholar
Ouyang T, Zhang X, Liu X, Ren L. Co-infection of swine with porcine circovirus type 2 and other swine viruses. Viruses. 2019;11(2):185.
Article
CAS
PubMed Central
Google Scholar
Palander PA, Heinonen M, Simpura I, Edwards SA, Valros AE. Jejunal morphology and blood metabolites in tail biting, victim and control pigs. Animal. 2013;7(9):1523–31.
Article
CAS
PubMed
Google Scholar
Petry DB, Holl JW, Weber JS, Doster AR, Osorio FA, Johnson RK. Biological responses to porcine respiratory and reproductive syndrome virus in pigs of two genetic populations1,2. J Anim Sci. 2005;83(7):1494–502.
Article
CAS
PubMed
Google Scholar
PIC. Genus developing PRRSV resistance. https://www.pic.com/2021/06/22/genus-developing-prrsv-resistance/. Accessed 22 June 2021.
Plastow GS. Genomics to benefit livestock production: improving animal health. Revista Brasileira De Zootecnia. 2016;45(6):349–54.
Article
Google Scholar
Poppe M, Veerkamp RF, van Pelt ML, Mulder HA. Exploration of variance, autocorrelation, and skewness of deviations from lactation curves as resilience indicators for breeding. J Dairy Sci. 2020;103(2):1667–84.
Article
CAS
PubMed
Google Scholar
Poulsen AS-R, Luise D, Curtasu MV, Sugiharto S, Canibe N, Trevisi P, et al. Effects of alpha-(1,2)-fucosyltransferase genotype variants on plasma metabolome, immune responses and gastrointestinal bacterial enumeration of pigs pre- and post-weaning. PLoS ONE. 2018;13(8): e0202970.
Article
Google Scholar
Prendergast DM, Duggan SJ, Gonzales-Barron U, Fanning S, Butler F, Cormican M, et al. Prevalence, numbers and characteristics of Salmonella spp. on Irish retail pork. Int J Food Microbiol. 2009;131(2–3):233–9.
Article
CAS
PubMed
Google Scholar
Proudfoot C, Lillico S, Tait-Burkard C. Genome editing for disease resistance in pigs and chickens. Anim Front. 2019;9(3):6–12.
Article
PubMed
PubMed Central
Google Scholar
Putz AM, Harding JCS, Dyck MK, Fortin F, Plastow GS, Dekkers JCM, et al. Novel resilience phenotypes using feed intake data from a natural disease challenge model in wean-to-finish pigs. Front Genet. 2019;9:660.
Article
PubMed
PubMed Central
Google Scholar
Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318(5851):812–4.
Article
PubMed
Google Scholar
Rath P, Allen JA, Schneider DS. Predicting position along a looping immune response trajectory. PLoS ONE. 2018;13(10): e0200147.
Article
PubMed
PubMed Central
Google Scholar
Ren J, Yan X, Ai H, Zhang Z, Huang X, Ouyang J, et al. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS ONE. 2012;7(9): e44573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roubos-van den Hil PJ, Litjens R, Oudshoorn A-K, Resink JW, Smits CHM. New perspectives to the enterotoxigenic E. coli F4 porcine infection model: susceptibility genotypes in relation to performance, diarrhoea and bacterial shedding. Vet Microbiol. 2017;202:58–63.
Article
CAS
PubMed
Google Scholar
Roy BA, Kirchner JW. Evolutionary dynamics of pathogen resistance and tolerance. Evolution. 2000;54(1):51–63.
Article
CAS
PubMed
Google Scholar
Saade G, Deblanc C, Bougon J, Marois-Créhan C, Fablet C, Auray G, et al. Coinfections and their molecular consequences in the porcine respiratory tract. Vet Res. 2020;51(1):80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salak-Johnson JL, McGlone JJ. Making sense of apparently conflicting data: stress and immunity in swine and cattle1. J Anim Sci. 2007;85(suppl_13):E81–8.
Article
CAS
PubMed
Google Scholar
Samorè AB, Fontanesi L. Genomic selection in pigs: state of the art and perspectives. Ital J Anim Sci. 2016;15(2):211–32.
Article
Google Scholar
Sánchez-Vizcaíno JM, Mur L, Gomez-Villamandos JC, Carrasco L. An update on the epidemiology and pathology of African swine fever. J Comp Pathol. 2015;152(1):9–21.
Article
PubMed
Google Scholar
Sandberg FB, Emmans GC, Kyriazakis I. A model for predicting feed intake of growing animals during exposure to pathogens1. J Anim Sci. 2006;84(6):1552–66.
Article
CAS
PubMed
Google Scholar
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55–89.
CAS
PubMed
Google Scholar
Schmied JD, Putz A, Dekkers J, Dekkers M, Dyck M, Fortin F, et al. Mortality rate and survival of pigs classified by immune response phenotype using the high immune response (HIR™) technology. In: Proceedings of the world congress on genetics applied to livestock production. 2018. p. 653.
Schneider DS. Tracing personalized health curves during infections. PLoS Biol. 2011;9(9): e1001158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroyen M, Eisley C, Koltes JE, Fritz-Waters E, Choi I, Plastow GS, et al. Bioinformatic analyses in early host response to porcine reproductive and respiratory syndrome virus (PRRSV) reveals pathway differences between pigs with alternate genotypes for a major host response QTL. BMC Genom. 2016;17(1):196.
Article
Google Scholar
Serão NVL, Kemp RA, Mote BE, Willson P, Harding JCS, Bishop SC, et al. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Genet Sel Evol. 2016;48(1):51.
Article
PubMed
PubMed Central
Google Scholar
Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science. 2012;336(6080):481–5.
Article
CAS
PubMed
Google Scholar
Shourian M, Qureshi ST. Resistance and tolerance to cryptococcal infection: an intricate balance that controls the development of disease. Front Immunol. 2019;10:66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simms EL. Defining tolerance as a norm of reaction. Evol Ecol. 2000;14(4–6):563–70.
Article
Google Scholar
Soares MP, Gozzelino R, Weis S. Tissue damage control in disease tolerance. Trends Immunol. 2014;35(10):483–94.
Article
CAS
PubMed
Google Scholar
Soares MP, Teixeira L, Moita LF. Disease tolerance and immunity in host protection against infection. Nat Rev Immunol. 2017;17(2):83–96.
Article
CAS
PubMed
Google Scholar
Song S, Xu H, Zhao J, Leng C, Xiang L, Li C, et al. Pathogenicity of NADC34-like PRRSV HLJDZD32-1901 isolated in China. Vet Microbiol. 2020;246: 108727.
Article
CAS
PubMed
Google Scholar
Stalder K. Pork industry productivity analysis. National Pork Board, Des Moines, IA USA; 2013. https://jygatech.com/wp-content/uploads/2021/05/PigmortalityStalderIowa.pdf. Accessed July 2021.
Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, Madson D, et al. Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest. 2013;25(5):649–54.
Article
PubMed
Google Scholar
Sun R-Q, Cai R-J, Chen Y-Q, Liang P-S, Chen D-K, Song C-X. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis. 2001;1(18):161–3.
Google Scholar
Suravajhala P, Kogelman LJA, Kadarmideen HN. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare. Genet Sel Evol. 2016;48(1):38.
Article
PubMed
PubMed Central
Google Scholar
Tait-Burkard C, Doeschl-Wilson A, McGrew MJ, Archibald AL, Sang HM, Houston RD, et al. Livestock 2.0—genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 2018;19(1):204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thanawongnuwech R, Suradhat S. Taming PRRSV: revisiting the control strategies and vaccine design. Virus Res. 2010;154(1–2):133–40.
Article
CAS
PubMed
Google Scholar
Thompson-Crispi KA, Sewalem A, Miglior F, Mallard BA. Genetic parameters of adaptive immune response traits in Canadian Holsteins. J Dairy Sci. 2012;95(1):401–9.
Article
CAS
PubMed
Google Scholar
Tomley FM, Shirley MW. Livestock infectious diseases and zoonoses. Philos Trans R Soc B Biol Sci. 2009;364(1530):2637–42.
Article
Google Scholar
Tong G-Z, Zhou Y-J, Hao X-F, Tian Z-J, An T-Q, Qiu H-J. Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis. 2007;13(9):1434–6.
Article
PubMed
PubMed Central
Google Scholar
Topigs Norsvin. Topigs Norsvin implements PRRS resistance in breeding value estimation. https://topigsnorsvin.com/news-tn1/breeding/topigs-norsvin-implements-prrs-restance-in-breeding-value-estimation/. Accessed 28 Feb 2018.
Torres BY, Oliveira JHM, Tate AT, Rath P, Cumnock K, Schneider DS. Tracking resilience to infections by mapping disease space. PLoS Biol. 2016;14(4): e1002436.
Article
PubMed
PubMed Central
Google Scholar
Trevisan G, Li G, Moura CAA, Coleman K, Thomas P, Zhang J, et al. Complete coding genome sequence of a novel porcine reproductive and respiratory syndrome virus 2 restriction fragment length polymorphism 1-4-4 lineage 1C variant identified in Iowa, USA. Microbiol Resour Announc. 2021;10(21):e00448-21.
Article
PubMed Central
Google Scholar
Tseng M, Fratamico PM, Manning SD, Funk JA. Shiga toxin-producing Escherichia coli in swine: the public health perspective. Anim Health Res Rev. 2014;15(1):63–75.
Article
PubMed
PubMed Central
Google Scholar
Ursinus WW, Reenen CGV, Reimert I, Bolhuis JE. Tail biting in pigs: blood serotonin and fearfulness as pieces of the puzzle? PLoS ONE. 2014;9(9): e107040.
Article
PubMed
PubMed Central
Google Scholar
Valros A, Palander P, Heinonen M, Munsterhjelm C, Brunberg E, Keeling L, et al. Evidence for a link between tail biting and central monoamine metabolism in pigs (Sus scrofa domestica). Physiol Behav. 2015;143:151–7.
Article
CAS
PubMed
Google Scholar
VanderWaal K, Deen J. Global trends in infectious diseases of swine. Proc Natl Acad Sci. 2018;115(45):201806068.
Article
Google Scholar
Waide EH, Tuggle CK, Serão NVL, Schroyen M, Hess A, Rowland RRR, et al. Genomic prediction of piglet response to infection with one of two porcine reproductive and respiratory syndrome virus isolates. Genet Sel Evol. 2018;50(1):3.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Byrum B, Zhang Y. New variant of porcine epidemic diarrhea virus, United States, 2014. Emerg Infect Dis. 2014;20(5):917–9.
Article
PubMed
PubMed Central
Google Scholar
Wells KD, Bardot R, Whitworth KM, Trible BR, Fang Y, Mileham A, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J Virol. 2016;91(2):e01521-16.
Article
Google Scholar
Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016;34(1):20–2.
Article
CAS
PubMed
Google Scholar
Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, et al. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res. 2019;28(1):21–32.
Article
CAS
PubMed
Google Scholar
Wilkie B, Mallard B. Selection for high immune response: an alternative approach to animal health maintenance? Vet Immunol Immunopathol. 1999;72(1–2):231–5.
Article
CAS
PubMed
Google Scholar
Wilson K, Zanella R, Ventura C, Johansen HL, Framstad T, Janczak A, et al. Identification of chromosomal locations associated with tail biting and being a victim of tail-biting behaviour in the domestic pig (Sus scrofa domesticus). J Appl Genet. 2012;53(4):449–56.
Article
PubMed
Google Scholar
Xu K, Zhou Y, Mu Y, Liu Z, Hou S, Xiong Y, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. Elife. 2020;9: e57132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu L, Wang X, Yu H, Jiang Y, Gao F, Tong W, et al. The emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus with additional 120aa deletion in Nsp2 region in Jiangxi, China. Transbound Emerg Dis. 2018;65(6):1740–8.
Article
CAS
PubMed
Google Scholar
Zhang B, Ren J, Yan X, Huang X, Ji H, Peng Q, et al. Investigation of the porcine MUC13 gene: isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Anim Genet. 2008;39(3):258–66.
Article
CAS
PubMed
Google Scholar
Zhang C, Thekkoot D, Kemp B, Dekkers J, Plastow G. A genetic marker for PRRS resistance has no adverse effect on economically important traits in pigs. J of Anim Sci. 2020;98(Supplement 3):145.
Article
CAS
Google Scholar
Zhao K, Ye C, Chang X-B, Jiang C-G, Wang S-J, Cai X-H, et al. Importation and recombination are responsible for the latest emergence of highly pathogenic porcine reproductive and respiratory syndrome virus in China. J Virol. 2015;89(20):10712–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, et al. Emergence of African swine fever in China, 2018. Transbound Emerg Dis. 2018;65(6):1482–4.
Article
PubMed
Google Scholar