Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E. Plant resistance inducers against pathogens in solanaceae species—from molecular mechanisms to field application. Int J Mol Sci. 2016;17:1673. https://doi.org/10.3390/ijms17101673.
Article
CAS
PubMed Central
Google Scholar
Baebler Š, Stare K, Kovač M, Blejec A, Prezelj N, Stare T, et al. Dynamics of responses in compatible potato - potato virus y interaction are modulated by salicylic acid. PLoS ONE. 2011;6(12): e29009. https://doi.org/10.1371/journal.pone.0029009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakker L. Insects and insecticides in agricultural landscapes: socio-ecological challenges and patterns. Wageningen University. 2021; https://doi.org/10.18174/538522
BID (Banco Interamericano para el Desarrollo). Retornos económicos de la contribución de FONTAGRO a la innovación agropecuaria en América Latina y el Caribe. Informe final Estudio de beneficios económicos de resultados de proyectos cofinanciados por FONTAGRO. 2020; p. 46. http://repositorio.iica.int/handle/11324/9755
Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B. Improving potato stress tolerance and tuber yield under a climate change scenario–a current overview. Front Plant Sci. 2019;10:563. https://doi.org/10.3389/fpls.2019.00563.
Article
PubMed
PubMed Central
Google Scholar
Delaney S, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, et al. A central role of salicylic acid in plant disease resistance. Science. 1994;266:1247–50. https://doi.org/10.1126/science.266.5188.1247.
Article
CAS
PubMed
Google Scholar
Fakhimi F, Motallebi A, Zaree F, Sokhandan N, Gohari G. Effect of salicylic acid on betaine aldehyde dehydrogenase gene expression in potato (Solanum tuberosum L., cv. Agria) under salinity stress. Environ Stress Crop Sci. 2020;13(1):1–8. https://doi.org/10.22077/escs.2019.1847.1436.
Article
Google Scholar
FAO. (Food and Agriculture Organization). Production of disease-free seed tubers. International Year of the Potato Secretariat Food and Agriculture Organization of the United Nations. Rome: FAO; 2008a. http://www.fao.org/potato-2008a/pdf/IYP-9en.pdf
FAO (Food and Agriculture Organization). Potato pest and disease management. International Year of the Potato Secretariat Food and Agriculture Organization of the United Nations. Rome: FAO. 2008b. http://www.fao.org/potato-2008b/en/potato/pests.html
FAO (Food and Agriculture Organization). World Food and Agriculture - Statistical Pocketbook 2020. 2020; Rome. https://doi.org/10.4060/cb1521en
Faried HN, Ayyub CM, Amjad M, Ahmed R, Wattoo FM, Butt M, et al. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation. J Sci Food Agric. 2017;97(6):1868–75. https://doi.org/10.1002/jsfa.7989.
Article
CAS
PubMed
Google Scholar
Ghazanfar MU, Raza W, Wakil W, Hussain I, Qamar MI. Management of late blight and sucking insect pests of potato with application of salicylic acid and β-aminobutyric acid under greenhouse conditions. Sarhad J Agric. 2020;36(2):646–54. https://doi.org/10.17582/journal.sja/2020/36.2.646.654.
Article
Google Scholar
González-Gallegos E, Laredo-Alcalá E, Ascacio-Valdés J, de Rodríguez D, Hernández-Castillo FD. Changes in the production of salicylic and jasmonic acid in potato plants (Solanum tuberosum) as response to foliar application of biotic and abiotic inductors. Am J Plant Sci. 2015;6:1785–91.
Article
Google Scholar
de Haan S, Rodriguez, F. Potato origin, and production. In: Advances in potato chemistry and technology. Academic Press; 2016. p. 1–32. https://doi.org/10.1016/B978-0-12-800002-1.00001-7
Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S. Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. MPMI. 2007;20(11):1346–52. https://doi.org/10.1094/MPMI-20-11-1346.
Article
CAS
PubMed
Google Scholar
Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: A review. Environ Exp Bot. 2010;68(1):14–25. https://doi.org/10.1016/J.ENVEXPBOT.2009.08.005.
Article
CAS
Google Scholar
Hayat S, Ahmad A. Salicylic Acid: A Plant Hormone. Springer: The Netherlands; 2007. https://doi.org/10.1007/1-4020-5184-0
Koo YM, Heo AY, Choi HW. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J. 2020;36(1):1–10. https://doi.org/10.5423/PPJ.RW.12.2019.0295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lastochkina O, Baymiev A, Shayahmetova A, Garshina D, Koryakov I, Shpirnaya I, et al. Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants. 2020;9(1):76. https://doi.org/10.3390/plants9010076.
Article
CAS
PubMed Central
Google Scholar
Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J. Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf. 2019;172:317–25. https://doi.org/10.1016/j.ecoenv.2019.01.078.
Article
CAS
PubMed
Google Scholar
Liang WS, Wen JQ, Liang HG. Growth and metabolism stimulation of ethylene production in aged potato tuber slices by salicylic acid. Phytochemistry. 1997;44(2):221–3. https://doi.org/10.1016/S0031-9422(96)00468-2.
Article
CAS
Google Scholar
López-Delgado H, Mora-Herrera ME, Zavaleta-Mancera HA, Cadena-Hinojosa M, Scott IM. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. Am J Potato Res. 2004;81(3):171–6. https://doi.org/10.1007/BF02871746.
Article
Google Scholar
Lopez-Delgado HA, Scott I M, Mora-Herrera M E. Stress and Antistress Effects of Salicylic Acid and Acetyl Salicylic Acid on Potato Culture Technology. In: Hayat S, Ahmad A. (eds) Salicylic Acid: A Plant Hormone. Springer: Dordrecht, 2007. https://doi.org/10.1007/1-4020-5184-0_7
López-Delgado H A, Mora-Herrera M E, Martínez-Gutiérrez R, Sánchez-Rojo S. Short and Long Term Effects of Salicylic Acid on Protection to Phytoplasma Associated Stress in Potato Plants. In: Hayat S., Ahmad A., Alyemeni M. (eds) Salicylic Acid. Springer: Dordrecht, 2013. https://doi.org/10.1007/978-94-007-6428-6_14
López-López MJ, Liebana E, Marcilla P, Beltra R. Resistance induced in potato tubers by treatment with acetylsalicylic acid to soft rot produced by Erwinia carotovora subsp. carotovora. J Phytopathol. 1995;143(11):719–24. https://doi.org/10.1111/j.1439-0434.1995.tb00229.x.
Article
Google Scholar
Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M. Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with Potato virus Y. Frontiers in microbiology. 2018;9:2582. https://doi.org/10.3389/fmicb.2018.02582.
Article
PubMed
PubMed Central
Google Scholar
Murphy AM, Zhou T, Carr JP. An update on salicylic acid biosynthesis, its induction and potential exploitation by plant viruses. Curr Opin Virol. 2020;42:8–17. https://doi.org/10.1016/j.coviro.2020.02.008.
Article
CAS
PubMed
Google Scholar
Navarre DA, Mayo D. Differential characteristics of salicylic acid-mediated signaling in potato. Physiol Mol Plant Pathol. 2004;64(4):179–88. https://doi.org/10.1016/j.pmpp.2004.09.001.
Article
CAS
Google Scholar
Ponce C. Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: a word of caution on the sustainability of adaptation to climate change. World Dev. 2020;127: 104740. https://doi.org/10.1016/j.worlddev.2019.104740.
Article
Google Scholar
Quiroz R, Ramírez DA, Kroschel J, Andrade-Piedra J, Barreda C, Condori B, et al. Impact of climate change on the potato crop and biodiversity in its center of origin. Open Agric. 2018;3(1):273–83. https://doi.org/10.1515/opag-2018-0029.
Article
Google Scholar
Raskin I. Role of salicylic acid in plants. Ann Rev Plant Physiol Plant Mol Biol. 1992;43:439–63. https://doi.org/10.1146/annurev.pp.43.060192.002255.
Article
CAS
Google Scholar
Reymond P, Farmer E. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol. 1998;1:404–11. https://doi.org/10.1016/S1369-5266(98)80264-1.
Article
CAS
PubMed
Google Scholar
Ruiz-Sáenz DR, Ayala-Hernández DD, Niino T, Cruz-Gutiérrez EJ, Aquino-Martínez JG, López-Delgado HA. Salicylic acid-cryotherapy treatment for elimination of potato virus S from Solanum tuberosum. Am J Potato Res. 2019;96(3):225–34. https://doi.org/10.1007/s12230-018-09694-4.
Article
CAS
Google Scholar
Sánchez-Rojo S, López-Delgado HA, Mora-Herrera ME, Almeyda-León HI, Zavaleta-Mancera HA, Espinosa-Victoria D. Salicylic acid protects potato plants from phytoplasma-associated stress and improves tuber photosynthate assimilation. Am J Potato Res. 2011;88(2):175–83. https://doi.org/10.1007/s12230-010-9175-y.
Article
CAS
Google Scholar
Singh PK, Gautam S. Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant. 2013;35:2345–53. https://doi.org/10.1007/s11738-013-1279-9.
Article
CAS
Google Scholar
USAID (United States Agency for International Development). El Uso del Ácido Salicílico y Fosfonatos (Fosfitos) para Activar el Sistema de Resistencia de la Planta (SAR). Boletín técnico de producción, USAID-RED, Oficina FHIA, La Lima, Cortes, Honduras; 2006. http://marcelozingariello.com/afital/salicilico.pdf
Van Loon LC. Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol. 2007;119:243–54. https://doi.org/10.1007/978-1-4020-6776-1_2.
Article
Google Scholar
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol. 2009;47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202.
Article
CAS
PubMed
Google Scholar
Walters D, Ratsep J, Havis N. Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot. 2013;64(5):1263–80. https://doi.org/10.1093/jxb/ert026.
Article
CAS
PubMed
Google Scholar
Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N. Salicylic acid to decrease plant stress. Environ Chem Lett. 2017;15(1):101–23. https://doi.org/10.1007/s10311-016-0584-0.
Article
CAS
Google Scholar
Zhang K, Halitschkec R, Yina C, Liub C, Gana S. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. PNAS. 2013;113(36):14807–12. https://doi.org/10.1073/pnas.1302702110.
Article
Google Scholar
Zhou XT, Jia LJ, Wang HY, Zhao P, Wang WY, Liu N, et al. The potato transcription factor Stb ZIP 61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection. Plant J. 2018;95(6):1055–68. https://doi.org/10.1111/tpj.14010.
Article
CAS
PubMed
Google Scholar