Adejuwon J. Assessing the suitability of the EPIC crop model for use in the study of impacts of climate variability and climate change in West Africa. Singap J Trop Geogr. 2005;26(1):44–60.
Article
Google Scholar
Adem M, Tamado T, Singh P, Driba K, Adamu M. Modeling climate change impact on chickpea production and adaptation options in the semi-arid north-eastern Ethiopia. J Agric Environ Int Develop (JAEID). 2016;110(2):377–95. https://doi.org/10.12895/jaeid.20162.510.
Article
Google Scholar
Amanuel A, Girma A. Production Status, Adoption of Improved Common Bean (Phaseolus vulgaris L) Varieties and Associated Agronomic Practices in Ethiopia. J Plant Sci Res. 2018;5(1):178.
Google Scholar
Araya A, Stroosnijder L. Assessing drought risk and irrigation need in northern Ethiopia. Agric Forest Meteorological. 2011;151:425–36.
Article
Google Scholar
Araya A, Stroosnijder L, Solomon H, Mache B, Kiros MH. Risk assessment by sowing date for barley (Hordeum vulgare) in northern Ethiopia. Agric Forest Meteorol. 2012;154–155:30–7.
Article
Google Scholar
Asfaw A, Almekinders CJM, Blair MW, Struik PC. Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed. 2012;2009(131):125–34.
Article
Google Scholar
Asfaw A, Blair MW, Almekinders C. Genetic diversity and population structure of common bean (Phaseolus vulgaris L) landraces from the East African highlands. Theor Appl Genet. 2012;120:1–12.
Article
Google Scholar
Bhupinderdhir S. Crop productivity in changing climate chapter. Sustain Agric Rev. 2018;27:213–41. https://doi.org/10.1007/978-3-319-75190-0-.
Article
Google Scholar
Birhanu A, Adam B, Yalew M. Analysis of Cost and Return of Soybean Production under Small Holder Farmers in Pawe District, North-Western Ethiopia. Journal of Natural Sciences Research. 2018;8(1):28–34.
Google Scholar
Black CA. Methods of soil analysis. Part I, American Society of Agronomy. Madison, Wisconsin, USA. 1572 P. 1965.
Bouyoucos GJ. Hydrometer method im-proved for making particle size analysis of soils. Agron J. 1962;54:464–5.
Article
Google Scholar
Chapman HD.. Cation Exchange Capacity. (In: Black, C.A., Ed.,) Methods of Soil Analysis, American Society of Agronomy; Madison, 891–901. 1965.
Collier MA. The CSIROMk3.6.0. Atmosphere-Ocean GCM. Participation in CMIP5 and data publication, Perth, pp. 12–16 (MODSIM December; 2011;
Collins WJ. Development and evaluation of an Earth. Systemmodel-HadGEM2. 2011; 4 (4), 1051–1075
Conway D, Schipper ELF. Adaptation to climate change in Africa: challenges and opportunities identified from Ethiopia. Glob Environ. 2014;21:227–37.
Article
Google Scholar
CSA. Agricultural sample survey report on area and production for major crops (private peasant holdings Meher season) for 2007/08. The Federal Democratic Republic of Ethiopia. Statistical Bulletin 278, Addis Ababa, Ethiopia, 2015.
CSA. Agricultural Sample Survey 2013/2014 Area and Production of Major Crops, Statistical Bulletin, Addis Ababa, 2014;
CSA Agricultural sample survey: report on area and production of major crops (private peasant holdings, Meher season). Statistical Bulletin 1, Addis Ababa, Ethiopia; 2014.
Demeke AB, Keil A, Zeller M. Using panel data to estimate the effect of rainfall shocks on smallholder food security and vulnerability in rural Ethiopia. Clim Change. 2011;108:185–206.
Article
Google Scholar
Dereje A, Kindie T, Girma M, Birru Y, Wondimu B. Variability of rainfall and its current trend in Amhara region. Ethiopia Africa J Agric Res. 2012;7(10):1475–86. https://doi.org/10.5897/AJAR11.698.
Article
Google Scholar
Deresa TT. Measuring the Economic Impact of Climate Change on Ethiopian Agriculture. Centre for Environmental Economics and Policy in Africa, University of Pretoria. Ethiopian Revenue and Custom Authority (ERCA), Export Data. 2006.
Donner LJ. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim. 2011;24:13.
Article
Google Scholar
Dufresne JL. Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn. 2013;4:1–43.
Google Scholar
Dunne JP. GFDL’s ESM2 global coupled Climate-Carbon earth system models part I: physical formulation and baseline simulation characteristics. J Clim. 2012;25:6646–65.
Article
Google Scholar
Energy Group of ECSNCC Netzork. Renewable Energy and Climate Change Nexus in Ethiopia. Addis Ababa: Gaia Association, 2011.
EPA (Environmental Protection Agency). National Report of Ethiopia, the United Nations Conference on Sustainable Development (Rio+20). Addis Ababa: Federal Democratic Republic of Ethiopia, 2012.
ERCA. Management and Policy (MPMP) in the Department of Public Administration and. Development Management. Addis Ababa, Ethiopia. 2015.
Ferris S. Kaganzi E. Evaluating marketing opportunities for haricot beans in Ethiopia. IPMS (Improving Productivity and Market Success) of Ethiopian Farmers Project Working Paper 7. ILRI (International Livestock Research Institute), Nairobi, Kenya. 2008. p. 68.
Graves AR, Hess T, Matthews RB, Stephens W, Middleton T. Crop simulation models as tools in computer laboratory and classroom-based education. J Nat Resour Life Sci Educ. 2002;31:48–58.
Article
Google Scholar
Gummadi S, Rao KPC, Jemal S, Gizachew L, Kadiyala MDM, Robel T, Tilahun A. Anthony Whitbread. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980–2010, 2017.
Hadgu G, Tesfaye K, Mamo G. Analysis of climate change in northern Ethiopia: implications for agricultural production. Theor Appl Climatol. 2015;121(3):733–47. https://doi.org/10.1007/s00704-014-1261-5.
Article
Google Scholar
He W, et al. Climate change impacts crop yield, soil water balance, and nitrate leaching in the semiarid and humid regions of Canada. PLoS ONE. 2018;13(11):0207370.
Google Scholar
Hoogenboom G, Jones JW, Wilkens P, Porter CH, Boote KJ, Hunt LA, Singh U, Lizaso JL, White JW, Uryasev O, Royce FS, Ogoshi R. Gijsman, AJ, Tsuji GY. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM]. University of Hawaii, Honolulu, Hawaii; 2010.
Hoogenboom GJW, Jones PW, Wilkens CH, Porter KJ, Boote La, Hunt U, Singh J, Lizaso JW, White O, Uryasev FS, Royce R, Ogoshi AJ, Gijsman GY, Tsuji, J. Koo Decision support system for Agrotechnology transfer: version 4.5. Honolulu: University of Hawaii, 2012.
Hoogenboom GJW, Jones PW, Wilkens CH, Porter KJ, Boote LA, Hunt U, Singh JI, Lizaso JW. White O, Uryasev R, Ogoshi J. Koo V, Shelia, GY, Tsuji. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net). DSSAT Foundation, Prosser, Washington. 2015;
IPCC. Summary for policymakers. In: Stocker TF, Qin D, Plattner M, Allen J, Boschung A, Nauels Y, Bex V, Midgley PM (Eds.), Climate Change 2013:The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 2013
IPCC. IPCC Working Group I: The Physical Science Basis of Climate Change: Latest Findings to be Assessed by WGI in AR5. IPCC, 2009 https://www.ipcc-wg1.unibe.ch/presentations/stocker09unfcccCopenhagendelegatenew.
IPCC (Inter-governmental Panel on Climate Change). The IPCC’s fifth Assessment report. What’s in it for Africa, 2014; p. 32–59.
Jones PG, Thornton PK. The potential impacts of climate change on maize production in Africa and Latin America in 2005. Glob Environ Change. 2009;13:51–9.
Article
Google Scholar
Jones PG, Thornton PK. Generating downscaled weather data from a suite of climate models for agricultural modeling applications. Int J Agric Syst. 2013;114:1–5.
Article
Google Scholar
Jones PG, Thornton K. Generating downscaled weather data froma suite of climate models for agricultural modeling application. Agric Syst. 2013;114:1–5.
Article
Google Scholar
Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT. DSSAT cropping system model. Eur J Agron. 2003;18:235–65.
Article
Google Scholar
Kassie BT, Asseng S, Rotter RP, Hengsdijk H, Ruane AC, Van Ittersum MK. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models. Clim Change. 2015;129:145–58. https://doi.org/10.1007/s10584-014-1322-x.
Article
Google Scholar
Katungi E, Farrow A, Chianu J, Sperling L, Beebe S. Common bean in Eastern and Southern Africa: a situation and outlook analysis. International Center for Tropical Agriculture (CIAT): Kampala; 2009.
Google Scholar
Kidanu A, Rovin K, Hardee K. Linking Population, Fertility and Family Planning with Adaptation to Climate Change: Views from Ethiopia. Addis Ababa and Washington, DC: Miz-Hasab Research Center (MHRC) and Population Action International (PAI). 2009.
Kirkevag A, Iversen T, Seland O, Debernard JB, Storelvmo T, Kristjansson JE. Aerosol-Cloud-Climate Interactions Climate Model CAM-Oslo Tellus A. 2008;60(3):492–512.
Google Scholar
Legesse D, Kumssa G, Assefa T, Taha M, Gobena J, Alema T, Abebe A, Mohamed Y, Terefe H. Production and marketing of white pea beans in the Rift Valley, Ethiopia. National bean research program of the Ethiopian Institute of Agricultural Research. 2006.
Li ZT, Yang JY, Drury CF, et al. Evaluation of the DSSAT CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agric Syst. 2015;135:90–104.
Article
Google Scholar
López-Cedrón XF, Boote KJ, Piñeiro J, et al. Improving the CERES-Maize Model Ability to Simulate Water deficit Impact on Maize Production and Yield Components. Agron J. 2008;100:296–307.
Article
Google Scholar
FAO (Food and Agriculture Organization). Analysis of price incentives for wheat in Ethiopia. Technical notes series, MAFAP, by Wakeyo M.B., Lanos B. 2014,
MoANR (Ministry of Agriculture and Natural Resource). Crop variety Register Issue No. 19. MoANR Plant Variety Release, Protection and Seed Quality Control Directorate. Addis Ababa, Ethiopia. 2016.
Muluneh A, Birhanu B, Stroosnijder L, Bewket W, Keesstra S. Impact of predicted changes in rainfall and atmospheric carbon dioxide on maize and wheat yields in the Central Rift Valley of Ethiopia. J Reg Environ Change. 2015. https://doi.org/10.1007/s10113-014-0685-x.
Article
Google Scholar
Musongaleli B, Filbert R, Siza D, Tumbo NK. Sorghum yield response to changing climatic conditions in semi-arid central Tanzania: Evaluating crop simulation model applicability. Agric Sci. 2014. https://doi.org/10.4236/as.2014.510087.
Article
Google Scholar
Nayyar H, Singh S, Kaur S, Kumar S, Upadhyaya HD. Differential sensitivity of macrocarpa and macrocarpa types of chickpea to water stress association of contrasting stress response with oxidative injury. J Integrat Plant Biol. 2006;48:1318–29.
Article
CAS
Google Scholar
NMA. Climate change national adaptation program of action (NAPA) of Ethiopia: technical report. Addis Ababa: National Meteorological Agency; 2007. p. 85.
Google Scholar
Olsen R, Cole S, Watanabe F, Dean L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. New York: Department of Agriculture Circ; 1954. p. 939.
Google Scholar
Van Reeuwijk. Procedure for soil analysis. International soil reference and information center (ISRIC), Technical paper, no.9. 2002.
Ritchie JT. Soil water balance and plant water stress. In: Tsuji GY, Hoogenboom G, Thornton PK, editors. Understanding Options for Agricultural Production. Dordrecht: Kluwer Academic Publishers; 1998. p. 41–54.
Chapter
Google Scholar
Rockström J, Hatibu N, Oweis TY, Wani SP. Managing water in agriculture. In: Molden D, editor. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. International Water Management Institute (IWMI), Colombo: Sri Lanka; 2007. p. 315–52.
Google Scholar
Rubyogo JC, Gebeyehu S, Tumsa K, Negas K, Habte E, Katungi E, Sperling L, Wozemba D. Increased bean productivity through increased access to improved seeds and use of improved bean management techniques in Ethiopia. 2011.
SAS (Statistical Analysis System) Institute. The SAS System for windows TM. 2008.
Schmidt GA. Present day atmospheric simulations using GISS Model : Comparison to in-situ, satellite and reanalysis data. J Climate. 2006;19:153–92.
Article
Google Scholar
Setegn SG, Rayner D, Melesse AM, Dargahi B, Srinivasan R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resource Res. 2011;47:W04511. https://doi.org/10.1029/2010WR009248.
Article
Google Scholar
Singh P, Virmani SM. Modelling growth and yield of chickpea (Cicer arietinum L.). Field Crop Res. 1996;46:41–59.
Article
Google Scholar
Song Z, Qiao F, Song Y. Response of the equatorial basin-wide SST to wave mixing in a climate model: an amendment to tropical bias. J Geophysics Res. 2012;117:C00J26.
Google Scholar
Tesfaye S, Raj AJ, Gebersamuel G. Assessment of climate change impacts on the hydrologic response of Geba Catchment, Tekez Basin, and Northern Ethiopia. Am J Environ Eng. 2014;4(2):25–32.
Google Scholar
USAID. A Climate Trend Analysis of Ethiopia. Famine Early Warning Systems Network, Informing Climate Change Adaptation Series, 2015.
Wallach D, Goffinet B. Mean squared error predictions as criterion for evaluating and comparing system models. Ecol Modeling. 1989;44:299–306.
Article
Google Scholar
Watanabe M. Improved climate simulation by MIROC5: mean states variability, and climate sensitivity. J Climate. 2010;23:6312–35.
Article
Google Scholar
Watanabe S. MIROC-ESM2010: model description and basic results ofCMIP5-20c3 m experiments. Geosci Model Dev. 2011;4(4):845–72.
Article
Google Scholar
Wilby RL, Troni J, Biot Y, Tedd L, Hewitson BC, Smith DM. A review of climate risk information for adaptation and development planning. Int J Climatol. 2009;29:1193–215.
Article
Google Scholar
Willmott CJ. On the Validation of Models. Phys Geogr. 1981;2:184–94.
Article
Google Scholar
World Bank. Economics of adaptation to climate change: Ethiopia. The World Bank Group, Washington, p 124. 2010.
Wu T. A mass-Flux cumulus parameterization scheme for large scalemodels: description and test with observations. Clim Dynam. 2012;38:725–44.
Article
Google Scholar
Yitayal A, Lema Z. Common Bean Production, Marketing, and Validation of New Product Concepts. Research Report No 125. http://www.eiar.gov.et. 2019.
Yukimoto S. A new global climate model of Meteorological Research Institute: MRI-CGCM3–Model description and basic performance. J Meteorol Soc Jpn. 2012;90:23–64.
Article
Google Scholar
Zerihun A. On-farm yield variability and responses of common bean (Phaseolus vulgaris L.) varieties to rhizobium inoculation with inorganic fertilizer rates. J Anim Plant Sci. 2017;32(2):5120–33.
Google Scholar